
PROLE 2009

Termination and Cost Analysis with COSTA

and its User Interfaces

E. Albert1 P. Arenas1 S. Genaim1 M. Gómez-Zamalloa1

G. Puebla2 D. Ramı́rez2 G. Román2 D. Zanardini2

1 DSIC, Complutense University of Madrid, {elvira,puri,samir.genaim,mzamalloa}@fdi.ucm.es

2 Technical University of Madrid, {german,diana,groman,damiano}@clip.dia.fi.upm.es

Abstract

costa is a static analyzer for Java bytecode which is able to infer cost and termination information for
large classes of programs. The analyzer takes as input a program and a resource of interest, in the form
of a cost model, and aims at obtaining an upper bound on the execution cost with respect to the resource
and at proving program termination. The costa system has reached a considerable degree of maturity in
that (1) it includes state-of-the-art techniques for statically estimating the resource consumption and the
termination behavior of programs, plus a number of specialized techniques which are required for achieving
accurate results in the context of object-oriented programs, such as handling numeric fields in value analysis;
(2) it provides several non-trivial notions of cost (resource consumption) including, in addition to the number
of execution steps, the amount of memory allocated in the heap or the number of calls to some user-specified
method; (3) it provides several user interfaces: a classical command line, a Web interface which allows
experimenting remotely with the system without the need of installing it locally, and a recently developed
Eclipse plugin which facilitates the usage of the analyzer, even during the development phase; (4) it can deal
with both the Standard and Micro editions of Java. In the tool demonstration, we will show that costa is
able to produce meaningful results for non-trivial programs, possibly using Java libraries. Such results can
then be used in many applications, including program development, resource usage certification, program
optimization, etc.

Keywords: Cost Analysis, Termination Analysis, Resource Usage.

1 Introduction and System Description

We start by describing the architecture of costa, an abstract-interpretation-based

static analyzer for studying the cost [4] and termination [1] behavior of Java bytecode

[7] programs. Cost analysis deals with statically estimating the amount of resources

which can be consumed at runtime (i.e., the cost), given the notion of a specific

resource of interest, while the goal of termination analysis is to prove, when it is

the case, that a program terminates for every input.

⋆ This work was funded in part by the Information Society Technologies program of the European Commis-
sion, Future and Emerging Technologies under the IST-15905 MOBIUS and IST-231620 HATS projects, by
the Spanish Ministry of Education (MEC) under the TIN-2005-09207 MERIT, TIN-2008-05624 DOVES and
HI2008-0153 (Acción Integrada) projects, and the Madrid Regional Government under the S-0505/TIC/0407
PROMESAS project.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:elvira@sip.ucm.es
mailto:puri@sip.ucm.es
mailto:samir@clip.dia.fi.upm.es
mailto:mzamalloa@sip.ucm.es
mailto:german@fi.upm.es
mailto:diana@clip.dia.fi.upm.es
mailto:groman@clip.dia.fi.upm.es
mailto:damiano@clip.dia.fi.upm.es


Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

The input provided to the analyzer consists of a program and a description of

the resource of interest, which we refer to as cost model. costa tries to infer an up-

per bound of the resource consumption, and sound information on the termination

behavior (i.e., if the system infers that the program terminates then it should def-

initely terminate). The system comes equipped with several notions of cost, such

as the heap consumption, the number of bytecode instructions executed, and the

number of calls to a specific method.

costa is based on the classical approach to static cost analysis [14] which consists

of two phases. First, given a program and a description of the resource, the analysis

produces cost relations, which are sets of recursive equations. Second, closed-form

solutions are found, if possible. For this, costa uses PUBS [2].

Having both cost and termination analysis in the same tool is interesting since

such analyses share most of the computing machinery, and thus a large part of the

analyzer is common to both. As an example, proving termination needs reasoning

about the number of iterations of every loop in the program, which is also an

essential piece of information for computing its cost.

In spite of being still a prototype, costa includes state-of-the-art techniques

for cost and termination analysis, plus a number of specialized components and

auxiliary static analyses which are required in order to achieve accurate results in

the context of object-oriented programs, such as handling numeric fields in value

analysis. As for the usability, the system provides several user interfaces: (i) a

classical command-line interface (Section 2.1); (ii) a Web interface which allows

using costa from a remote location, without the need of installing it locally (Sec-

tion 2.2), and permits to upload user-defined examples as well as testing programs

from a representative set; and (iii) a recently developed plugin for the widely used

programming environment Eclipse [6], which allows easily using the analyzer while

developing software (Section 2.3). costa can deal with full sequential Java, either

in the Standard Edition [13] or the Micro Edition [8]. Needless to say, the analyzer

works on Java bytecode programs, and does not require them to come from the

compilation of Java source code: instead, bytecode may have been implemented by

hand, or obtained by compiling languages different from Java.

The tool demonstration will show that costa is able to read .class files and

produce meaningful and reasonably precise results for non-trivial programs, possibly

using Java libraries. Possible uses of such cost and termination results include:

• helping the programmer in the development process, as obtained by using costa

from the Eclipse plugin;

• the costa results can be used as guarantees that the program will not take too

much time or resources in its execution nor fail to terminate; furthermore, this

can potentially be combined with the Proof-carrying code [10] paradigm by adding

certificates to programs which make checking resource usage more efficient.

• program optimization, costa can be used for guiding program optimization or

choosing the most efficient implementation among several alternatives.

The preliminary experimental results performed to date are very promising and they

suggest that resource usage and termination analysis can be applied to a realistic

object-oriented, bytecode programming language.

2



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

Fig. 1. Two ways of setting values for analysis options

2 User Interfaces of COSTA

2.1 Command-Line Interface

costa has a command-line interface for executing costa as a standalone application.

Different switches allow controlling the different options of the analyzer. It facili-

tates the implementation of other interfaces, as discussed below. They collect user

information and interact with costa by making calls to its command-line interface.

2.2 Web Interface

The costa web interface allows users to try out the system on a set of representative

examples, and also to upload their own programs, which can be in the form of either

Java source, or as Java bytecode, in which case it can be given as a .class or a

.jar file. As the behavior of costa can be customized using a relatively large set

of options, the web interface allows two alternatives modes of use.

The first alternative, which we call automatic (see Figure 1, left) allows the user

to choose from a range of possibilities which differ in the analysis accuracy and

overhead. Starting from level 0, the default, we can increase the analysis accuracy

(and overhead) by using levels 1 through 3. We can also reduce analysis overhead

(and accuracy) by going down to levels -1 through -3. The main advantage of the

automatic mode is that it does not require the user to understand the different

options implemented in the system and their implications in analysis accuracy and

overhead. The second alternative is called manual (see Figure 1, right) and it

is meant for expert users. There, the user has access to all the analysis options,

allowing a fine-grained control over the behavior of the analyzer. For instance,

these options allow deciding whether to analyze the Java standard libraries or not,

whether to take exceptions into account, to perform or not a number of pre-analyses,

to write/read analysis results to file in order to reuse them in later analyses, etc.

Figure 2 shows the output of costa on an example program with exponential

3



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

Fig. 2. Results

Fig. 3. costa Plugin Preferences

complexity. In addition to showing the result of termination analysis and an upper

bound on the execution cost, costa (optionally) displays information about the time

required by the intermediate steps performed by the analyzer in previous phases.

2.3 Eclipse Plugin

costa also has available an Eclipse plugin interface, which is fully integrated within

the Eclipse development environment. This plugin allows programmers to analyze

methods during the development process. It loads the classpath established for

the project and uses for analysis the same classes and libraries specified by the user

to compile and execute the program. As in the web interface, users can configure a

large set of options by using the Eclipse preferences configuration window, as shown

in Fig. 3. These options are saved and loaded at every Eclipse execution. Also, the

user can choose either the automatic analysis or the expert mode which allows a

more fine-grained customization, like in the web interface. By using this plugin,

4



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

Fig. 4. costa Plugin Markers and View

one can analyze one or several methods from a class (see Fig. 5) or the whole class

(by running the analysis on all its methods). The results of the analysis are shown

using markers in the source code (see Fig. 4). Such markers are different depending

on the cost model used for analysis. In addition, the plugin also shows all previous

analysis results in an additional view, which we call “the costa view”. The costa

view also includes a warning icon for methods whose termination is not proved, in

order to alert the programmer about potential problems. It can also read comments

in the source code, written in Javadoc style, in order to set up analysis information.

Fig. 5. costa Plugin Methods Selection

3 Functionalities of COSTA

In this section, we explain the main functionalities of costa by means of several

small examples. Some of these examples aim at illustrating the different cost models

available in the system. The last two examples are related to termination issues.

In particular, we start in Sect. 3.1 by showing a program whose execution requires

5



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

public static int funExp(int n) {

if (n < 1) return 1;

else return funExp(n - 1) + funExp(n - 2);

}

Fig. 6. Example for number of instructions

abstract class List {

abstract List copy();

}

class Nil extends List {

List copy() {

return new Nil();

}

}

class Cons extends List {

int elem;

List next;

List copy(){

Cons aux = new Cons();

aux.elem = m(this.elem);

aux.next = this.next.copy();

return aux;

}

static int m(int n) {

Integer aux = new Integer(n);

return aux.intValue();

}

} // class Cons

Fig. 7. Example for memory consumption

an exponential number of bytecode instructions. Then, in Sect. 3.2, we present

the cost model that bounds the total heap consumption of executing a program

and the recent extension to account for the effect of garbage collection. Sect. 3.3

performs resource analysis on a MIDlet using the cost model “number of calls” to

a given method. Finally, in Sect. 3.4, we prove termination on an example whose

resource consumption cannot be bound by costa and, also, show the latest progress

to handle numeric fields(Sect. 3.5) in termination analysis.

3.1 Number of Instructions

The cost model which counts the number of instructions which are executed is

probably the most widely used within cost analyzers, as it is a first step towards

estimating the runtime required to run a program. Let us consider the Java method

in Fig. 6. The execution of this method has an exponential complexity as each call

spawns two recursive calls until the base case is found. costa yields the upper

bound(slightly pretty printed) -13 + 18*2nat(n) using its automatic mode which

indicates, as expected, that the number of instructions which are executed grows

exponentially with the value of the input argument n. This shows that costa is not

restricted to polynomial complexities, in contrast to many other approaches to cost

analysis.

3.2 Memory Consumption

Let us consider the Java program depicted in Figure 7. It consists of a set of Java

classes which define a linked-list data structure in an object-oriented style. The

class Cons is used for data nodes (in this case integer numbers) and the class Nil

plays the role of null to indicate the end of a list. Both Cons and Nil extend the

abstract class List. Thus, a List object can be either a Cons or a Nil instance.

Both subclasses implement a copy method which is used to clone the corresponding

6



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

object. In the case of Nil, copy just returns a new instance of itself since it is the

last element of the list. In the case of Cons, it returns a cloned instance where the

data is cloned by calling the static method m, and the continuation is cloned by

calling recursively the copy method on next.

The heap cost model of costa basically assigns, to each memory allocation in-

struction, the number of heap units it consumes. It can therefore be used to infer

the total amount of memory allocated by the program. Running costa in automatic

mode, level 0, yields the following upper bound for the copy method of class Cons:

nat(this-1)*(12 + k1 + k2 + k3) + 12 + 2*k1 + k2 + k3

It can be observed that the heap consumption is linear w.r.t. the input parameter

this, which corresponds to the size of the this object of the method, i.e., the length

of the list which is being cloned. This is because the abstraction being used by

costa for object references is the length of the longest reference chain, which in

this case corresponds to the length of the list. The expression also includes some

constants. The symbolic constants k1, k2 and k3 represent the memory consumption

of the library methods which are transitively invoked. In particular, k1 corresponds

to the constructor of class Object and k2 resp. k3 to the constructor and intValue

method of the class Integer. The numeric constant 12 is obtained by adding 8 and

4, being 8 the bytes taken by an instance of class Cons, and 4 the bytes taken by

an Integer instance. Note that we are approximating the size of an object by the

sum of the sizes of all of its fields. In particular, both an integer and a reference are

assumed to consume 4 bytes.

Interestingly, we can activate the flag go into java api and thus ask costa to

analyze all library methods which are transitively invoked. In this case we obtain

the upper bound 12*nat(this-1) + 12, for the same method. This is because the

library methods used do not allocate new objects on the heap.

3.2.1 Peak Heap Consumption

In the case of languages with automatic memory management (garbage collection)

such as Java Bytecode, measuring the total amount of memory allocated, as done

above, is not very accurate, since the actual memory usage is often much lower.

Peak heap consumption analysis aims at approximating the size of the live data on

the heap during a program’s execution, which provides a much tighter estimation.

We have recently developed and integrated in costa a peak memory consumption

analysis [5]. Among other things, this has required the integration of an escape

analysis which approximates the objects which do not escape, i.e., which are not

reachable after a method’s execution. The upper bound ub(A) = 8*nat(A-1) + 24

is now obtained for the same example.

An interesting observation is that the Integer object which is created inside the m

method is not reachable from outside and thus can be garbage collected. The peak

heap analyzer accounts for this and therefore deletes the size of the Integer object

from the recursive equation, thus obtaining 8 instead of 12 multiplying nat(A− 1).

By looking at the upper bound above, it can be observed that costa is not being

fully precise, as the actual peak consumption of this method is 8 ∗ nat(A − 1) + 8

7



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

public void commandAction(Command c, Displayable s) {

if (c == exitCommand) {

destroyApp(false);

notifyDestroyed();

}

if (c == sendMsgCommand) {

try {

TextMessage tmsg=(TextMessage)clientConn.newMessage(MessageConnection.TEXT MESSAGE);

tmsg.setAddress("sms://+34697396559");

tmsg.setPayloadText(msgToSend);

clientConn.send(tmsg);

}

catch (Exception exc) {

exc.printStackTrace();

}

}

}

Fig. 8. Example for number of calls

(i.e. the size of the cloned list). The reason for this is that the upper bound solver

has to consider an additional case introduced by the peak heap analysis to ensure

soundness, hence making the second constant increase to 24.

3.3 Number of Calls – Java Micro Edition

The Java Micro Edition (Java ME ) [8] technology provides a limited environment

to create Java applications which can be run on small devices with limited memory,

display and power capacity. It is based on three elements: a configuration that

provides the most basic set of libraries and virtual machine capabilities, a profile

which is a set of APIs supported by mobile devices and an optional package (set

of technology-specific APIs). MIDP (Mobile Information Device Profile) [12] is

the profile that limits the set of APIs to only those functional areas considered as

absolute requirements to achieve broad portability and successful deployments. A

MIDlet is an application meeting the specifications for the Java ME technology,

such as a game or a business application. Each MIDlet is an object of class MIDlet

which follows a lifecycle [9], which is a state automaton managed by the Application

Management System (AMS ).

costa is able to perfom resource analysis on MIDlets by considering all classes

used on each method called during the lifecycle of the MIDlet. Such methods are

the constructor of the class, the startApp() and the commandAction(Command c,

Displayable d) methods. In particular, the classes used during the analysis of

the class constructor are added to the analysis of the startApp() method. Af-

ter analyzing startApp() method, the current classes are used for analyzing the

commandAction(Command c, Displayable d) method. As a result, the analyzer

obtains a more precise cost and resource analysis for MIDP applications. Fig. 8

shows a simple but real example MIDlet that sends a text message: the text mes-

sage is created (newMessage method), the recipient phone number set (setAddress

method) and the text message is sent using the method send(Message tmsg) of

the Wireless Messaging API.

We analyze this example using the cost model that counts the number of calls

8



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

static int factorial(int n) {

int fact=1;

for (int i=1; i<=n; i++) fact=fact*i;

return fact;

};

static int doSum(List x) {

if (x==null) return 0;

else return factorial(x.elem)*doSum(x.next);

}

Fig. 9. Example for termination

(ncalls) to a particular method. We apply it to obtain an upper bound on how

many times the send(Message tmsg) method is called during the execution of

commandAction method in a mobile device. costa outputs 1 as result, as it is to be

expected.

3.4 Termination

Fig. 9 shows two methods which belong to the same class. The method doSum

computes the sum of all factorial numbers contained in the elements of a linked list

x, where List is defined as in Fig. 7. costa is able to ensure the termination of

method doSum but no upper bound can be found by the system for the cost model

ninst. The information that costa yields when computing an upper bound is:

The Upper Bound for ’doSum’(x) is nat(x)*(19+c(maximize_failed)*9)+4
Terminates?: yes

Intuitively, the cost of the calls to factorial cannot be bound because the value of

x.elem is unknown at analysis time. However, we can still prove that the execution

of the two methods always terminates by finding a so-called ranking function [11].

The technical details about how costa deals with termination can be found in [1].

3.5 Numeric Fields

Fig. 10 shows a Java program involving a numeric field in the condition of the loop

of method m. This loop terminates in sequential execution because the field size is

decreased at each iteration, at instruction x.f.setSize(x.f.getSize()− 1), and, for

any initial value of size, there are only a finite number of values which size can take

before reaching zero. Unfortunately, applying standard value analyses on numeric

fields can produce wrong results because numeric variables are stored in a shared

mutable data structure, i.e., the heap. This implies that they can be modified using

different references which are aliases and point to such memory location. Hence,

further conditions are required to safely infer termination. costa incorporates a

novel approach for approximating the value of heap allocated numeric variables [3]

which greatly improves the precision over existing field-insensitive value analyses

while introducing a reasonable overhead. For the example in Fig. 10, costa not

only guarantees termination of method m but is also able to compute the (pretty

printed) upper bound for m(this,x,y,size) is 33+nat(size)*35 by using the

cost model ninst.

4 Discussion and Future Work

costa is, to the best of our knowledge, the first tool for fully automatic cost analy-

sis of object-oriented programs. Currently, the system can be tried online through

9



Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

class B {

private int size;

public int getSize(){return size;};

public void setSize(int n){size=n;};

};

class A {

private B f;

int m(A x,B y) {

int i=0;

while (x.f.getSize()>0) {

i=i+y.getSize();

x.f.setSize(x.f.getSize()-1);

}

return i;

}

};

Fig. 10. Example for termination in presence of numeric fields

the COSTA web site: http://costa.ls.fi.upm.es. We plan to distribute it soon

under a GPL license. The fact that costa analyzes bytecode, i.e., compiled code,

makes it more widely applicable, since it is customary in Java applications to dis-

tribute compiled programs, often bundled in jars, for which the Java source is not

available.

As future work we plan to: (1) define new cost models to measure the consump-

tion of new resources; (2) support other complexity schemes such as the inference

of lower-bounds; (3) improve both the precision and performance of the underlying

static analyses; and (4) handle the analysis of concurrent programs.

References

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination Analysis of
Java Bytecode. In FMOODS, LNCS 5051, pages 2–18, 2008.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for Recurrence
Relations in Cost Analysis. In SAS, LNCS 5079, 2008.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Dealing with numeric fields in termination analysis
of java-like languages. In FTfJP, 2008.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode. In
ESOP, LNCS 4421, pages 157–172. Springer, 2007.

[5] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Languages with Garbage
Collection. In ISMM’09: Proceedings of the 8th international symposium on Memory management,
New York, NY, USA, June 2009. ACM Press.

[6] ECRC. Eclipse User’s Guide. European Computer Research Center, 1993.

[7] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. A-W, 1996.

[8] Java ME. http://java.sun.com/javame/technology/index.jsp.

[9] MIDP. http://java.sun.com/javame/reference/apis/jsr118/javax/-microedition/midlet/package-
summary.html.

[10] G. Necula. Proof-Carrying Code. In ACM Symposium on Principles of programming languages (POPL
1997), pages 106–119. ACM Press, 1997.

[11] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking functions. In
VMCAI, 2004.

[12] Java Community Process MIDP Release. http://jcp.org/aboutJava/communityprocess/final/jsr118-
/index.html.

[13] Java SE. http://java.sun.com/javase/technologies/index.jsp.

[14] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

10

http://costa.ls.fi.upm.es

	Introduction and System Description
	User Interfaces of COSTA
	Command-Line Interface
	Web Interface
	Eclipse Plugin

	Functionalities of COSTA
	Number of Instructions
	Memory Consumption
	Number of Calls -- Java Micro Edition
	Termination
	Numeric Fields

	Discussion and Future Work
	References

