Automatic Granularity-Aware Parallelization of Programs with Predicates, Functions, and Constraints

Manuel Hermenegildo<sup>1,2</sup> http://www.cliplab.org/~herme

with Francisco Bueno,<sup>1</sup> Manuel Carro,<sup>1</sup> Amadeo Casas,<sup>2</sup> Pedro López,<sup>1</sup> Edison Mera,<sup>1</sup> and Jorge Navas<sup>2</sup>

> Departments of Computer Science <sup>1</sup>Technical University of Madrid, and <sup>2</sup>University of New Mexico

Supported by several CICYT/MCyT/MEC grants and EU FP-4/5/6 projects.

# **Objectives**

- Parallelism (*finally*!) becoming mainstream thanks to *multicore* –even on laptops!
- Our objective herein is *automatic parallelization* of programs with predicates, functions, and constraints.
- We concentrate on detecting and-parallelism (corresponds to, e.g., loop parallelization, task parallelism, divide and conquer, etc.):

# **Objectives**

- Parallelism (*finally*!) becoming mainstream thanks to *multicore* –even on laptops!
- Our objective herein is *automatic parallelization* of programs with predicates, functions, and constraints.
- We concentrate on detecting and-parallelism (corresponds to, e.g., loop parallelization, task parallelism, divide and conquer, etc.):

```
fib(0) := 0.
fib(1) := 1.
fib(N) := fib(N-1)+fib(N-2)
      :- N>1.
fib(0, 0).
fib(1, 1).
fib(N, F) :-
      N>1,
      ( N1 is N-1,
      fib(N1, F1) ) &
      ( N2 is N-2,
      fib(N2, F2) ),
      F1+F2.
```

 $\rightarrow$  Need to detect *independent* tasks.

## What is Independence? (for Functions, Predicates, Constraints, ...)

- Correctness: "same" solutions as sequential execution.
- Efficiency: execution time < than seq. program (or, at least, no-slowdown: <). (We assume parallel execution has no overhead in this first stage.)

| 0 | Running | $s_1$ | // | $s_2$ : |
|---|---------|-------|----|---------|
|---|---------|-------|----|---------|

|       | Imperative      | Functions  | Constraints |  |
|-------|-----------------|------------|-------------|--|
| $s_1$ | Y := W+2;       | (+ W 2)    | Y = W+2,    |  |
| $s_2$ | X := Y+Z;       | (+ Z)      | X = Y + Z,  |  |
|       | read-write deps | strictness | cost!       |  |

## What is Independence? (for Functions, Predicates, Constraints, ...)

- Correctness: "same" solutions as sequential execution.
- Efficiency: execution time < than seq. program (or, at least, no-slowdown: <). (We assume parallel execution has no overhead in this first stage.)

|   | Rupping a // a ·                                                                         |       | Imperative                                      | Functions  | Constraints |  |
|---|------------------------------------------------------------------------------------------|-------|-------------------------------------------------|------------|-------------|--|
| • |                                                                                          |       | Y := W+2;                                       | (+ W 2)    | Y = W+2,    |  |
| T | $1101111119 \ s_1 \ n \ s_2.$                                                            | $s_2$ | X := Y+Z;                                       | (+ Z)      | X = Y + Z,  |  |
|   |                                                                                          |       | read-write deps                                 | strictness | cost!       |  |
|   | For <i>Predicates</i> (multiple procedure definitions):                                  |       |                                                 |            |             |  |
|   | main:-                                                                                   |       | p(X) :- X=a.                                    |            |             |  |
|   | $s_1$ p(X),<br>$s_2$ q(X),<br>write(X).                                                  |       | q(X) :- X=b, large computation.<br>q(X) :- X=a. |            |             |  |
|   | Again, cost issue: if p affects q (prunes its choices) then q ahead of p is speculative. |       |                                                 |            |             |  |

Independence: condition that guarantees correctness and efficiency.

## Independence

- Strict independence (suff. condition): no "pointers" shared at run-time:
- Non-strict independence: only one thread accesses each shared variable.
  - Requires global analysis.
  - Required in programs using "incomplete structures" (difference lists, etc.).

## Independence

- Strict independence (suff. condition): no "pointers" shared at run-time:
- Non-strict independence: only one thread accesses each shared variable.
  - Requires global analysis.
  - Required in programs using "incomplete structures" (difference lists, etc.).
- Constraint independennce more involved:

main :- X .>. Y, Z .>. Y, p(X) & q(Z), ...
main :- X .>. Y, Y .>. Z, p(X) & q(Z), ...

#### Independence

- Strict independence (suff. condition): no "pointers" shared at run-time:
- Non-strict independence: only one thread accesses each shared variable.
  - Requires global analysis.
  - Required in programs using "incomplete structures" (difference lists, etc.).
- Constraint independennce more involved:

main :- X .>. Y, Z .>. Y, p(X) & q(Z), ...
main :- X .>. Y, Y .>. Z, p(X) & q(Z), ...

Sufficient a-priori condition: given  $g_1(\bar{x})$  and  $g_2(\bar{y})$ , c state just before them:

$$(\bar{x} \cap \bar{y} \subseteq def(c)) \ and \ (\exists_{-\bar{x}}c \land \exists_{-\bar{y}}c \to \exists_{-\bar{y}\cup\bar{x}}c))$$

(def(c) = set of variables constrained to a unique value in c)

• For 
$$c = \{x > y, z > y\}$$
  
•  $\overline{\exists}_{-\{x\}}c = \overline{\exists}_{-\{z\}}c = \overline{\exists}_{-\{x,z\}}c = true$   
• For  $c = \{x > y, y > z\}$   
•  $\overline{\exists}_{-\{x\}}c = \overline{\exists}_{-\{z\}}c = true,$   
•  $\overline{\exists}_{\{x,z\}}c = x > z$ 

Approximation: presence of "links" through the store.

## **Parallelization Process**

- Conditional dependency graph (of some code segment, e.g., a clause):
  - Vertices: possible tasks (statements, calls,...),
  - Edges: possible dependencies (labels: conditions needed for independence).
- Local or global analysis used to reduce/remove checks in the edges.
- Annotation process converts graph back to parallel expressions in source.



- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation multi-paradigm language/prog.env. with:
  - Predicates, constraints, functions (including lazyness), higher-order, ... (And Prolog impure features only present as compatibility libraries.)

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation multi-paradigm language/prog.env. with:
  - Predicates, constraints, functions (including lazyness), higher-order, ... (And Prolog impure features only present as compatibility libraries.)
  - Assertion language for expressing rich program properties (types, shapes, pointer aliasing, non-failure, determinacy, termination, data sizes, cost, ...).
    - Static debugging, verification, program certification, PCC, …

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation multi-paradigm language/prog.env. with:
  - Predicates, constraints, functions (including lazyness), higher-order, ... (And Prolog impure features only present as compatibility libraries.)
  - Assertion language for expressing rich program properties (types, shapes, pointer aliasing, non-failure, determinacy, termination, data sizes, cost, ...).
    - Static debugging, verification, program certification, PCC, …
  - Parallel, concurrent, and distributed execution primitives.
    - Automatic parallelization.
    - Automatic granularity and resource control.

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation multi-paradigm language/prog.env. with:
  - Predicates, constraints, functions (including lazyness), higher-order, ...
     (And Prolog impure features only present as compatibility libraries.)
  - Assertion language for expressing rich program properties (types, shapes, pointer aliasing, non-failure, determinacy, termination, data sizes, cost, ...).
    - Static debugging, verification, program certification, PCC, …
  - Parallel, concurrent, and distributed execution primitives.
    - Automatic parallelization.
    - Automatic granularity and resource control.
  - + several control rules (e.g., bf, id, Andorra), objects, syntactic/semantic extensibility, LGPL, ...

## Some Speedups (for different analysis abstract domains)



#### The parallelizer, self-parallelized

- Replace parallel with sequential execution based on task size and overheads.
- Cannot be done completely at compile-time: cost often depends on input (hard to approximate at compile time, even w/abstract interpretation).
  main :- read(X), read(Z), inc\_all(X,Y) & r(Z,M), ...

## Granularity Control

- Replace parallel with sequential execution based on task size and overheads.
- Cannot be done completely at compile-time: cost often depends on input (hard to approximate at compile time, even w/abstract interpretation).
  main :- read(X), read(Z), inc\_all(X,Y) & r(Z,M), ...
- Our approach:
  - Derive at compile-time cost *functions* (to be evaluated at run-time) that efficiently bound task size (lower, upper *bounds*).
  - Transform programs to carry out run-time granularity control.



For inc\_all, (assuming "threshold" is 100 units):

#### Inference of Bounds on Argument Sizes and Procedure Cost in CiaoPP

- 1. Perform type/mode inference: :- true inc\_all(X,Y) : list(X,int), var(Y) => list(Y,int).
- 2. Infer size measures: list length.
- 3. Use data dependency graphs to determine the relative sizes of structures that variables point to at different program points infer argument size relations:

$$\begin{split} & \texttt{Size}_{\texttt{inc\_all}}^2(0) = 0 \text{ (boundary condition from base case),} \\ & \texttt{Size}_{\texttt{inc\_all}}^2(n) = 1 + \texttt{Size}_{\texttt{inc\_all}}^2(n-1). \end{split}$$

$$\mathsf{Sol} = \mathtt{Size}_{\mathtt{inc\_all}}^2(n) = n.$$

4. Use this, set up recurrence equations for the computational cost of procedures:

$$\begin{split} & \operatorname{Cost}_{\mathtt{inc\_all}}^{\mathrm{L}}(0) = 1 \text{ (boundary condition from base case),} \\ & \operatorname{Cost}_{\mathtt{inc\_all}}^{\mathrm{L}}(n) = 2 + \operatorname{Cost}_{\mathtt{inc\_all}}^{\mathrm{L}}(n-1). \end{split}$$

$$\mathsf{Sol} = \mathsf{Cost}_{\texttt{inc\_all}}^\mathsf{L}(n) = 2 \; n+1.$$

- We obtain lower/upper bounds on task granularities.
- Non-failure (absence of exceptions) analysis needed for lower bounds.

Simplification of cost functions:



```
Simplification of cost functions:
..., (length(X) > 50 -> inc_all(X,Y) & r(Z,M)
; inc_all(X,Y), r(Z,M)), ...
..., (length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)
; inc_all(X,Y), r(Z,M)), ...
```

• Complex thresholds: use also communication cost functions, load, ... [Example:] Assume  $CommCost(inc\_all(X)) = 0.1$  (length(X) + length(Y)). We know  $ub\_length(Y)$  (actually, exact size) = length(X); thus:

$$2 \ length(X) + 1 > 0.1 \ (length(X) + length(X)) \cong$$
$$2 \ length(X) > 0.2 \ length(X) \equiv$$
$$2 > 0.2$$

```
Simplification of cost functions:
..., (length(X) > 50 -> inc_all(X,Y) & r(Z,M)
; inc_all(X,Y) , r(Z,M) ), ...
..., (length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)
; inc_all(X,Y) , r(Z,M) ), ...
```

• Complex thresholds: use also communication cost functions, load, ... [Example:] Assume  $CommCost(inc\_all(X)) = 0.1$  (length(X) + length(Y)). We know  $ub\_length(Y)$  (actually, exact size) = length(X); thus:

$$\begin{array}{l} 2 \ length(X) + 1 > 0.1 \ (length(X) + length(X)) \cong \\ 2 \ length(X) > 0.2 \ length(X) \equiv \end{array}$$

Guaranteed speedup for any data size!  $\Leftarrow$  2 > 0.2

```
Simplification of cost functions:
..., (length(X) > 50 -> inc_all(X,Y) & r(Z,M)
; inc_all(X,Y), r(Z,M)), ...
..., (length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)
; inc_all(X,Y), r(Z,M)), ...
```

• Complex thresholds: use also communication cost functions, load, ... [Example:] Assume  $CommCost(inc\_all(X)) = 0.1$  (length(X) + length(Y)). We know  $ub\_length(Y)$  (actually, exact size) = length(X); thus:

$$\begin{array}{l} 2 \; length(X) + 1 > 0.1 \; (length(X) + length(X)) \cong \\ 2 \; length(X) > 0.2 \; length(X) \equiv \end{array}$$

Guaranteed speedup for any data size!  $\Leftarrow$  2 > 0.2

- Checking of data sizes can be stopped once under threshold.
- Data size computations can often be done on-the-fly.
- Static task clustering (loop unrolling), static placement, etc.

## Granularity Control System Output Example

```
g_qsort([], []).
g_qsort([First|L1], L2) :-
  partition3o4o(First, L1, Ls, Lg, Size_Ls, Size_Lg),
  Size_Ls > 20 -> (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2)
                                ; g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))
               ; (Size_Lg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2)
                                ; s_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))),
  append(Ls2, [First|Lg2], L2).
partition3o4o(F, [], [], [], 0, 0).
partition3o4o(F, [X|Y], [X|Y1], Y2, SL, SG) :-
  X =< F, partition3o4o(F, Y, Y1, Y2, SL1, SG), SL is SL1 + 1.
partition3o4o(F, [X|Y], Y1, [X|Y2], SL, SG) :-
   X > F, partition3o4o(F, Y, Y1, Y2, SL, SG1), SG is SG1 + 1.
```

## Refinements (2): Granularity-Aware Annotation

With classic annotators (MEL, UDG, CDG, ...) we applied granularity control after parallelization:



## Refinements (2): Granularity-Aware Annotation

With classic annotators (MEL, UDG, CDG, ...) we applied granularity control after parallelization:



- Developed new annotation algorithm that takes task granularity into account:
  - Annotation is a heuristic process (several alternatives possible).
  - Taking task granularity into account during annotation can help make better choices and speed up annotation process.
  - Tasks with larger cost bounds given priority, small ones not parallelized.



### Granularity-Aware Annotation: Concrete Example

- Consider the clause: p := a, b, c, d, e.
- Assume that the dependencies detected between the subgoals of p are given by:



Assume also that:

T(a) < T(c) < T(e) < T(b) < T(d),

where T(i) < T(j) means: cost of subgoal i is smaller than the cost of j.

## Granularity-Aware Annotation: Concrete Example

- Consider the clause: p := a, b, c, d, e.
- Assume that the dependencies detected between the subgoals of p are given by:



Assume also that:

T(a) < T(c) < T(e) < T(b) < T(d),

where T(i) < T(j) means: cost of subgoal i is smaller than the cost of j.

MEL annotator: ( a, b & c, d & e)
UDG annotator: ( c & ( a, b, e ), d )
Granularity-aware: ( a, c, ( b & d ), e )

# Refinements (3): Using Execution Time Bounds/Estimates

- Use estimations/bounds on *execution time* for controlling granularity (instead of steps/reductions).
- Execution time generally dependent on platform characteristics ( $\approx$  constants) and input data sizes (unknowns).
- Platform-dependent, one-time calibration using fixed set of programs:
  - Obtains value of the platform-dependent constants (costs of basic operations).
- Platform-independent, compile-time analysis:
  - Infers cost functions (using modification of previous method), which return count of *basic operations* given input data sizes.
  - Incorporate the constants from the calibration.
  - $\rightarrow$  we obtain functions yielding *execution times* depending on size of input.
- Predicts execution times with reasonable accuracy (challenging!).
- Improving by taking into account lower level factors (current work).

## Execution Time Estimation: Concrete Example

Consider nrev with mode:

```
:- pred nrev/2 : list(int) * var.
```

Estimation of execution time for a concrete input —consider:

 $A = [1,2,3,4,5], \overline{n} = \text{length}(A) = 5$ 

|                                                                                                                 | Once           | Static Analysis                                              | Application |                              |
|-----------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|-------------|------------------------------|
| component                                                                                                       | $K_{\omega_i}$ | $Cost_{p}(I(\omega_{i}),\overline{n}) = C_{i}(\overline{n})$ | $C_i(5)$    | $K_{\omega_i} \times C_i(5)$ |
| step                                                                                                            | 21.27          | $0.5 \times n^2 + 1.5 \times n + 1$                          | 21          | 446.7                        |
| nargs                                                                                                           | 9.96           | $1.5 \times n^2 + 3.5 \times n + 2$                          | 57          | 567.7                        |
| giunif                                                                                                          | 10.30          | $0.5 \times n^2 + 3.5 \times n + 1$                          | 31          | 319.3                        |
| gounif                                                                                                          | 8.23           | $0.5 \times n^2 + 0.5 \times n + 1$                          | 16          | 131.7                        |
| viunif                                                                                                          | 6.46           | $1.5 \times n^2 + 1.5 \times n + 1$                          | 45          | 290.7                        |
| vounif                                                                                                          | 5.69           | $n^2 + n$                                                    | 30          | 170.7                        |
| Execution time $\overline{K}_{\Omega} \bullet \overline{\text{Cost}_{p}}(\overline{I(\Omega)}, \overline{n})$ : |                |                                                              |             | 1926.8                       |

# Visualization of And-parallelism - (small) qsort, 4 processors



# Fib 15, 1 processor



# Fib 15, 8 processors (same scale)



# Fib 15, 8 processors (full scale)



# Fib 15, 8 processors, with granularity control (same scale)

