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Objectives

Parallelism (finally!) becoming mainstream thanks to multicore –even on laptops!

Our objective herein is automatic parallelization of programs
with predicates, functions, and constraints.

We concentrate on detecting and-parallelism (corresponds to, e.g., loop
parallelization, task parallelism, divide and conquer, etc.):
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Objectives

Parallelism (finally!) becoming mainstream thanks to multicore –even on laptops!

Our objective herein is automatic parallelization of programs
with predicates, functions, and constraints.

We concentrate on detecting and-parallelism (corresponds to, e.g., loop
parallelization, task parallelism, divide and conquer, etc.):

fib(0) := 0.

fib(1) := 1.

fib(N) := fib(N-1)+fib(N-2)

:- N>1.

fib(0, 0).

fib(1, 1).

fib(N, F) :-

N>1,

( N1 is N-1,

fib(N1, F1) ) &

( N2 is N-2,

fib(N2, F2) ),

F1+F2.

→ Need to detect independent tasks.
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What is Independence? (for Functions, Predicates, Constraints, ...)

Correctness: “same” solutions as sequential execution.
Efficiency: execution time < than seq. program (or, at least, no-slowdown: ≤).
(We assume parallel execution has no overhead in this first stage.)

Running s1 // s2:

Imperative Functions Constraints

s1 Y := W+2; (+ W 2) Y = W+2,

s2 X := Y+Z; (+ Z) X = Y+Z,

read-write deps strictness cost!
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What is Independence? (for Functions, Predicates, Constraints, ...)

Correctness: “same” solutions as sequential execution.
Efficiency: execution time < than seq. program (or, at least, no-slowdown: ≤).
(We assume parallel execution has no overhead in this first stage.)

Running s1 // s2:

Imperative Functions Constraints

s1 Y := W+2; (+ W 2) Y = W+2,

s2 X := Y+Z; (+ Z) X = Y+Z,

read-write deps strictness cost!

For Predicates (multiple procedure definitions):

main:-

s1 p(X),

s2 q(X),

write(X).

p(X) :- X=a.

q(X) :- X=b, large computation.

q(X) :- X=a.

Again, cost issue: if p affects q (prunes its choices) then q ahead of p is speculative.

Independence: condition that guarantees correctness and efficiency.
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Independence

Strict independence (suff. condition): no “pointers” shared at run-time:

Non-strict independence: only one thread accesses each shared variable.
Requires global analysis.
Required in programs using “incomplete structures” (difference lists, etc.).
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Independence

Strict independence (suff. condition): no “pointers” shared at run-time:

Non-strict independence: only one thread accesses each shared variable.
Requires global analysis.
Required in programs using “incomplete structures” (difference lists, etc.).

Constraint independennce –more involved:
main :- X .>. Y, Z .>. Y, p(X) & q(Z), ...

main :- X .>. Y, Y .>. Z, p(X) & q(Z), ...
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Independence

Strict independence (suff. condition): no “pointers” shared at run-time:

Non-strict independence: only one thread accesses each shared variable.
Requires global analysis.
Required in programs using “incomplete structures” (difference lists, etc.).

Constraint independennce –more involved:
main :- X .>. Y, Z .>. Y, p(X) & q(Z), ...

main :- X .>. Y, Y .>. Z, p(X) & q(Z), ...

Sufficient a-priori condition: given g1(x̄) and g2(ȳ), c state just before them:

(x̄ ∩ ȳ ⊆ def (c)) and (∃−x̄c ∧ ∃−ȳc → ∃−ȳ∪x̄c)

(def (c) = set of variables constrained to a unique value in c)

For c = {x > y, z > y} ∃̄−{x}c = ∃̄−{z}c = ∃̄−{x,z}c = true

For c = {x > y, y > z} ∃̄−{x}c = ∃̄−{z}c = true, ∃̄{x,z}c = x > z

Approximation: presence of “links” through the store.
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Parallelization Process

Conditional dependency graph (of some code segment, e.g., a clause):
Vertices: possible tasks (statements, calls,...),
Edges: possible dependencies (labels: conditions needed for independence).

Local or global analysis used to reduce/remove checks in the edges.
Annotation process converts graph back to parallel expressions in source.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

( test(1−3) −> ( g1, g2 ) & g3
                  ;   g1, ( g2 & g3 ) )

g1, ( g2 & g3 )Alternative:
"Annotation"

Local/Global analysis 
and simplification
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Concrete System Used in Examples: Ciao

One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

At the same time, new-generation multi-paradigm language/prog.env. with:

Predicates, constraints, functions (including lazyness), higher-order, ...
(And Prolog impure features only present as compatibility libraries.)
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One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

At the same time, new-generation multi-paradigm language/prog.env. with:

Predicates, constraints, functions (including lazyness), higher-order, ...
(And Prolog impure features only present as compatibility libraries.)

Assertion language for expressing rich program properties
(types, shapes, pointer aliasing, non-failure,
determinacy, termination, data sizes, cost, ...).

Static debugging, verification, program certification, PCC, ...
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Static debugging, verification, program certification, PCC, ...

Parallel, concurrent, and distributed execution primitives.
Automatic parallelization.
Automatic granularity and resource control.
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Concrete System Used in Examples: Ciao

One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

At the same time, new-generation multi-paradigm language/prog.env. with:

Predicates, constraints, functions (including lazyness), higher-order, ...
(And Prolog impure features only present as compatibility libraries.)

Assertion language for expressing rich program properties
(types, shapes, pointer aliasing, non-failure,
determinacy, termination, data sizes, cost, ...).

Static debugging, verification, program certification, PCC, ...

Parallel, concurrent, and distributed execution primitives.
Automatic parallelization.
Automatic granularity and resource control.

+ several control rules (e.g., bf, id, Andorra), objects, syntactic/semantic extensibility, LGPL, ...
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Some Speedups (for different analysis abstract domains)
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The parallelizer, self-parallelized
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Granularity Control

Replace parallel with sequential execution based on task size and overheads.

Cannot be done completely at compile-time: cost often depends on input (hard to
approximate at compile time, even w/abstract interpretation).
main :- read(X), read(Z), inc_all(X,Y) & r(Z,M), ...

Granularity-Aware Parallelization of Predicates/Functions/Constraints DAMP’07 – Nice, France – January 16, 2007



Slide 7

Granularity Control

Replace parallel with sequential execution based on task size and overheads.

Cannot be done completely at compile-time: cost often depends on input (hard to
approximate at compile time, even w/abstract interpretation).
main :- read(X), read(Z), inc_all(X,Y) & r(Z,M), ...

Our approach:
Derive at compile-time cost functions (to be evaluated at run-time) that
efficiently bound task size (lower, upper bounds).
Transform programs to carry out run-time granularity control.

g1 g3

g2

test(1−3)

"Annotation"
g1, ( g2 & g3 )

Gran. Control
g1, (gran_cond −> g2 & g3  ;  g2, g3  )

For inc all, (assuming “threshold” is 100 units):

main :- read(X), read(Z), ( 2*length(X)+1 > 100 -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M) ), ...
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Inference of Bounds on Argument Sizes and Procedure Cost in CiaoPP

1. Perform type/mode inference:
:- true inc_all(X,Y) : list(X,int), var(Y) => list(Y,int).

2. Infer size measures: list length.

3. Use data dependency graphs to determine the relative sizes of structures that
variables point to at different program points – infer argument size relations:

Size2inc all(0) = 0 (boundary condition from base case),
Size2inc all(n) = 1 + Size2inc all(n − 1).

Sol = Size2inc all(n) = n.

4. Use this, set up recurrence equations for the computational cost of procedures:

CostLinc all(0) = 1 (boundary condition from base case),
CostLinc all(n) = 2 + CostLinc all(n − 1).

Sol = CostLinc all(n) = 2 n + 1.

We obtain lower/upper bounds on task granularities.

Non-failure (absence of exceptions) analysis needed for lower bounds.

Granularity-Aware Parallelization of Predicates/Functions/Constraints DAMP’07 – Nice, France – January 16, 2007



Slide 9

Refinements (1): Granularity Control Optimizations

Simplification of cost functions:
..., ( length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M) ), ...
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Refinements (1): Granularity Control Optimizations

Simplification of cost functions:
..., ( length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M) ), ...

..., ( length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M) ), ...

Complex thresholds: use also communication cost functions, load, ...
Example: Assume CommCost(inc all(X)) = 0.1 (length(X) + length(Y )).
We know ub length(Y ) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) ∼=

2 length(X) > 0.2 length(X) ≡

2 > 0.2
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Complex thresholds: use also communication cost functions, load, ...
Example: Assume CommCost(inc all(X)) = 0.1 (length(X) + length(Y )).
We know ub length(Y ) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) ∼=

2 length(X) > 0.2 length(X) ≡

2 > 0.2Guaranteed speedup for any data size! ⇐

Granularity-Aware Parallelization of Predicates/Functions/Constraints DAMP’07 – Nice, France – January 16, 2007



Slide 9

Refinements (1): Granularity Control Optimizations

Simplification of cost functions:
..., ( length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M) ), ...

..., ( length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M) ), ...

Complex thresholds: use also communication cost functions, load, ...
Example: Assume CommCost(inc all(X)) = 0.1 (length(X) + length(Y )).
We know ub length(Y ) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) ∼=

2 length(X) > 0.2 length(X) ≡

2 > 0.2Guaranteed speedup for any data size! ⇐

Checking of data sizes can be stopped once under threshold.
Data size computations can often be done on-the-fly.
Static task clustering (loop unrolling), static placement, etc.
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Granularity Control System Output Example

g_qsort([], []).

g_qsort([First|L1], L2) :-

partition3o4o(First, L1, Ls, Lg, Size_Ls, Size_Lg),

Size_Ls > 20 -> (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2)

; g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))

; (Size_Lg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2)

; s_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))),

append(Ls2, [First|Lg2], L2).

partition3o4o(F, [], [], [], 0, 0).

partition3o4o(F, [X|Y], [X|Y1], Y2, SL, SG) :-

X =< F, partition3o4o(F, Y, Y1, Y2, SL1, SG), SL is SL1 + 1.

partition3o4o(F, [X|Y], Y1, [X|Y2], SL, SG) :-

X > F, partition3o4o(F, Y, Y1, Y2, SL, SG1), SG is SG1 + 1.

Granularity-Aware Parallelization of Predicates/Functions/Constraints DAMP’07 – Nice, France – January 16, 2007



Slide 11

Refinements (2): Granularity-Aware Annotation

With classic annotators (MEL, UDG, CDG, . . . ) we applied granularity control
after parallelization:

g1 g3

g2

test(1−3)

"Annotation"
g1, ( g2 & g3 )

Gran. Control
g1, (gran_cond −> g2 & g3  ;  g2, g3  )
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Refinements (2): Granularity-Aware Annotation

With classic annotators (MEL, UDG, CDG, . . . ) we applied granularity control
after parallelization:

g1 g3

g2

test(1−3)

"Annotation"
g1, ( g2 & g3 )

Gran. Control
g1, (gran_cond −> g2 & g3  ;  g2, g3  )

Developed new annotation algorithm that takes task granularity into account:
Annotation is a heuristic process (several alternatives possible).
Taking task granularity into account during annotation can help make better
choices and speed up annotation process.
Tasks with larger cost bounds given priority, small ones not parallelized.

g1 g3

g2

test(1−3)

(gran_cond, test13  −>  ( g1, g2 ) & g3
                               ;       g1,   g2,   g3 )Granularity−driven annotation

( assuming g2 "small" and g1 large if gran_cond )
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Granularity-Aware Annotation: Concrete Example

Consider the clause: p :- a, b, c, d, e.

Assume that the dependencies detected between the subgoals of p are given by:

b

d e

a

c

Assume also that:

T (a) < T (c) < T (e) < T (b) < T (d),

where T (i) < T (j) means: cost of subgoal i is smaller than the cost of j.
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Granularity-Aware Annotation: Concrete Example

Consider the clause: p :- a, b, c, d, e.

Assume that the dependencies detected between the subgoals of p are given by:

b

d e

a

c

Assume also that:

T (a) < T (c) < T (e) < T (b) < T (d),

where T (i) < T (j) means: cost of subgoal i is smaller than the cost of j.

MEL annotator: ( a, b & c, d & e)

UDG annotator: ( c & ( a, b, e ), d )

Granularity-aware: ( a, c, ( b & d ), e )
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Refinements (3): Using Execution Time Bounds/Estimates

Use estimations/bounds on execution time for controlling granularity (instead of
steps/reductions).

Execution time generally dependent on platform characteristics (≈ constants) and
input data sizes (unknowns).

Platform-dependent, one-time calibration using fixed set of programs:

Obtains value of the platform-dependent constants (costs of basic operations).

Platform-independent, compile-time analysis:

Infers cost functions (using modification of previous method),
which return count of basic operations given input data sizes.
Incorporate the constants from the calibration.

→ we obtain functions yielding execution times depending on size of input.

Predicts execution times with reasonable accuracy (challenging!).

Improving by taking into account lower level factors (current work).
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Execution Time Estimation: Concrete Example

Consider nrev with mode:
:- pred nrev/2 : list(int) * var.

Estimation of execution time for a concrete input —consider:

A = [1,2,3,4,5], n = length(A) = 5

Once Static Analysis Application
component Kωi

Costp(I(ωi), n) = Ci(n) Ci(5) Kωi
× Ci(5)

step 21.27 0.5 × n2 + 1.5 × n + 1 21 446.7
nargs 9.96 1.5 × n2 + 3.5 × n + 2 57 567.7
giunif 10.30 0.5 × n2 + 3.5 × n + 1 31 319.3
gounif 8.23 0.5 × n2 + 0.5 × n + 1 16 131.7
viunif 6.46 1.5 × n2 + 1.5 × n + 1 45 290.7
vounif 5.69 n2 + n 30 170.7

Execution time KΩ • Costp(I(Ω), n): 1926.8
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Visualization of And-parallelism - (small) qsort, 4 processors
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Fib 15, 1 processor
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Fib 15, 8 processors (same scale)
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Fib 15, 8 processors (full scale)
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Fib 15, 8 processors, with granularity control (same scale)
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