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Abstract. This paper proposes a diagnosis algorithm for locating a cer-
tain kind of errors in logic programs: variable binding errors that result
in abstract symptoms during compile-time checking of assertions based
on abstract interpretation. The diagnoser analyzes the graph generated
by the abstract interpreter, which is a provably safe approximation of the
program semantics. The proposed algorithm traverses this graph to find
the point where the actual error originates (a reason of the symptom),
leading to the point the error has been reported (the symptom). The pro-
cedure is fully automatic, not requiring any interaction with the user. A
prototype diagnoser has been implemented and preliminary results are
encouraging.

1 Introduction

Obtaining a program that satisfies the programmer’s intentions is clearly a cru-
cial objective in software development. If the program does not conform to the
user’s expectations (i.e., if it contains a discrepancy between the program se-
mantics and the specification –a symptom) this means that somewhere in the
program there is an error which has to be found and corrected. The difficulty in
this process comes from the fact that the effects of a given error (the symptoms)
propagate from one location in the code to another and manifest themselves far
away from the place where the error resides. The process of locating (a piece
of code that contains) an error given some symptom is called diagnosis. In this
paper we address the problem of compile-time automatic diagnosis in untyped
(constraint) logic programs, focusing on binding errors, meaning that we locate
a variable binding that eventually produces a symptom (making the program
erroneous). We aim at designing sound foundations for a practical and useful
diagnosis tool that can be used routinely.

Before an error can be diagnosed, its presence has to be detected through a
symptom. Our approach relies on the idea of compile-time program verification
and error detection based on abstract interpretation [7], as proposed in [13, 22,
14]. Properties expected by the user concern call and success patterns of program
predicates and are given in the form of assertions [11, 19, 21]. An important
characteristic of the approach used is that only a small number of assertions may
be present in the program, or even no assertions at all. In the latter case the



system takes advantage of assertions written for built-in and library predicates to
detect errors in user programs. Also, the approach is parametric on the abstract
domains used, so that a variety of properties can be proved or disproved, based
on the set of abstract domains used.

Assertion verification is preceded by static program analysis based on ab-
stract interpretation [7, 3, 20, 15]. The results of the analysis are compared against
the assertions. An assertion that can be shown to be false, together with the re-
lated program point is called a symptom. Such (abstract) symptoms are the
starting point of our diagnosis procedure. The static analyzer produces a pro-
gram analysis graph which is essentially a finite representation of all execution
paths that may appear at run-time, annotated with the state at the call and exit
points of procedures and at each program point. This graph is the fundamental
data structure exploited by the diagnoser. The diagnoser traverses the graph
from the point of the symptom, against the direction of execution, trying to
identify a point (or points) where variable bindings occur which are responsible
for the symptom. During the traversal, the abstract operations of the analyzer
are executed in order to analyze parts of the graph, and thus come to conclu-
sions regarding corresponding pieces of the code. The proposed procedure is fully
automatic, and does not require any user intervention. In the implementation,
the initial call to the diagnoser is (optionally) automatically triggered by the
assertion checker when a discrepancy with an assertion is detected.

2 Related work

Locating errors is an inherent part of debugging3 and has attracted significant
attention. One of the best-known diagnosis techniques is declarative or algorith-
mic debugging, initially proposed in [24]. In this approach the search for the
error takes the form of an interactive session with the user, who is required to
answer queries about the intended behavior of the program. A drawback of the
approach is that the number of questions posed to the user is typically very large.
One way to reduce the number of queries and to simplify them is to add partial
formal specifications to the program in the form of assertions [11], but the load
on the user remains a problem for the practical takeup of this technique. The al-
gorithmic debugging approach is strongly tied to the declarative semantics while
our aim is to develop an approach that works also for impure (constraint) logic
programs. An additional difference with our approach is that the declarative
debugging session concerns the concrete semantics and a single (test) execution
only, whereas we are interested in diagnosing errors at compile-time, and for all
possible executions.

When the full (abstract) specification of the program is available the method
known as abstract diagnosis [6] can be applied. This method however requires,
in addition to the full specification, again adherence to the declarative semantics
(and also makes the assumption that the specification can be linked with the

3 We prefer to reserve the term “debugging” for a process that involves both locating
and removing the bug.



concrete semantics via a Galois connection). Other techniques based on applying
a verification condition, such as, e.g., [10], can also be used to locate errors.
In [10], in particular, descriptive types are used to approximate the operational
semantics. A clause on which the inductive proof fails indicates an error.

In the context of strongly-typed languages, the problem of locating type er-
rors, i.e., understanding why an expression cannot be typed, has received much
attention. These diagnosis algorithms try to find a reason for the failure in type
unification during type inference. The problem was initially attacked in [26]
where the steps of the type inference procedure are recorded and later looked up
for inconsistencies. Many researchers (e.g., [2]) have followed this line and pro-
posed various improvements. In our case we are dealing with an untyped (logic)
language, and with a general class of properties that goes beyond traditional
types. Also, as in the typed languages, the error might be placed far away from
the expression reported in the type error message. But because in our case there
may be only a few assertions in the program, the error may in fact be propagated
further and show up much later, even in different functions or modules, and in a
way that does not correspond intuitively with the direction of the execution-time
data flow.

Our approach has a strong relationship with slicing (see e.g.,[12, 23] for slicing
in logic programming). Note that in (backward) slicing the goal is to find a piece
of program that potentially affects a value of a variable at the point of interest,
whatever the value is, whereas we are interested only in values violating the
specification. Also, unlike in slicing we do not track dependencies between indi-
vidual variables, letting an abstract domain and the generic abstract interpreter
capture the necessary information.

3 Preliminaries and notation

We assume that the reader is familiar with logic programming (see, e.g., [1, 18])
and abstract interpretation [7]. We will use the standard notions of SLD resolu-
tion and SLD derivation with the Prolog computation rule. We use a standard
notion of substitution, i.e. mappings from program variables to terms. A sub-
stitution will be typically denoted as θ, possibly with sub- or superscripts. We
also use θ|A to denote a projection of θ over variables in an atom A. Let Gk be
a resolvent of the form ← (A1, . . . , An)θ0 · · · θk, obtained in the k-th step of the
derivation. In step k + 1 we obtain the resolvent Gk+1 (denoted Gk ; Gk+1) of
the form ← (B1, . . . , Bm, A2, . . . , An)θ0 · · · θkθk+1 where B0 ← B1, . . . , Bm is a

renamed clause of the program and θk+1 = mgu(A1θ0 · · · θk, B0). Let
+

; denote
a transitive closure of ;. In order to handle program points we annotate every
atom A in a derivation by a program-point identifier p©, which determines a
clause and a position in the clause where A comes from. We write annotated
atoms as A p©. We say that a program point p© corresponds to a derivation state
G iff G is of the form ← (A p©, . . .)θ.

Goal-directed abstract interpretation is a technique whose aim is for a given
initial call pattern (describing a possibly infinite set of input data), to generate
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Fig. 1. A fragment of an abstract and-or graph.

annotations describing (in an abstract way) all possible run-time variable bind-
ings. The annotations are expressed in an abstract domain Dα (a lattice equipped
with a partial order v, and standard elements > and ⊥, and operations t and
u). In the case of logic programming, the annotations typically take the form of
abstract substitutions (approximations of concrete substitutions), i.e., mappings
from program variables to values in Dα. Abstract domain Dα and concrete do-
main D are linked to each other by two monotone mappings α : D 7→ Dα and
γ : Dα 7→ D, called abstraction and concretization functions respectively. We
do not restrict our attention to any specific abstract domain. However, in the
examples we will use for concreteness regular types [9, 25].

Throughout this paper we will use the abstract interpretation framework of
Bruynooghe [3], which, with variations and optimizations (in our case [20, 15]), is
the basis of a large portion of the practical analyzers for logic programs. In these
frameworks the analyzer produces a program analysis graph called an abstract
and-or graph. The abstract and-or graph is a finite description of the set of
(concrete) and-or trees that are conceptually traversed during execution of the
program. The abstract graph (see Figure 1) has two sorts of nodes: and-nodes
containing (copies of) heads of clauses, which have body atoms as their children4

and or-nodes which are body atoms representing calls. Each node (whether and-
or or-) is adorned with two substitutions, describing the bindings of variables
just before entering and just after exiting the respective piece of program code.

Let vars(E) denote a set of variables that occur in a syntactic object E. We
use the notation 〈λc, H, λs〉

AND to denote an and-node, where H is the head
of a clause, say H ← B1, . . . , Bn. λc is an abstract substitution that describes
the bindings of variables vars(H) before entering the clause, and λs keeps the
bindings after exiting the clause. The and-node with the atom H has children,
each being an or-node, written as 〈λi−1, Bi, λi〉

OR, for 1 ≤ i ≤ n. A substitution
λi describes bindings of variables just before calling an atom Bi+1 (or after
succeeding in the clause body if i = n), and it ranges over all vars((H ←
B1, . . . , Bn)). We use a function children(N) to denote an ordered set of children
of an and- or or-node N . We assume that all substitutions in the graph are

4 Clearly, children of nodes have to be ordered. Moreover, there might be more than
one and-node per clause.



different from ⊥, i.e., branches corresponding to sub-computations known to fail
are not present in the graph. Variables in the program and those in the abstract
and-or graph are renamed apart. During the analysis phase, when the abstract
and-or graph is constructed the following abstract operations (functions) are
used (following [15]):

– Aproj(λ, V ) performs the projection of a substitution λ on a set of variables
V .

– Aextend(λ, V ) extends the substitution λ to the set of variables V .
– Aunif(E1, E2, λ) performs abstract unification of two expressions E1 = E2

and conjoins the results with λ.
– Aconj(λ1, λ2) performs the abstract conjunction of two substitutions.
– Alub(λ1, λ2) performs the abstract disjunction of two substitutions5.

We recall the notion of topmost abstract substitution over the set of variables
V (introduced in [5]), which captures the abstract representation of the most
general concrete substitution, and which, e.g., for our example type domain can

be defined as λ>
V

def

= {X/> | X ∈ V }. V will be dropped if it is clear from the
context.

4 Assertions, Symptoms, and Errors

Our objective is to find a reason for a symptom, where the symptom is un-
derstood as a deviation of the program behavior from the user expectations.
The expectations have to be expressed as a formal specification. Such specifica-
tion is commonly written in terms of assertions (e.g., see [11, 19, 21]). A specific
assertion language definition is not required for our results (however, the imple-
mentation and experiments are carried out in the Ciao Preprocessor [14] using its
assertion language [21]). For simplicity we assume that a (partial) specification
is provided in terms of abstract substitutions assigned to program points. We
will refer to such substitutions as program-point assertions or expected proper-
ties, interchangeably. We explicitly allow the specification to be partial, i.e., the
program can contain just a few or even no assertions, the only assertions then
checked being those in libraries. A program-point assertion λProp between atoms
Bi and Bi+1 expresses an expected success pattern of Bi or expected call pattern
of Bi+1. Consequently, λProp ranges over vars(Bi) or vars(Bi+1). Note that we
have chosen program point assertions without loss of generality since predicate-
level assertions (cf. [21]) can be translated to program point assertions with a
simple program transformation. We also assume that the expected properties
are renamed along with the clauses, so that they range over the same variables
as the copies of the clauses present in the abstract graph. These assumptions
simplify the subsequent presentation. Finally, we assume that abstract values
are over-approximations (a dual approach applies for under-approximations).

5 While we will not need this operation in the paper it is included in order to make
the description complete and avoid confusion.



Now we are in a position to define a notion of symptom. Assume that at a
program point s© there is an associated assertion λProp. A symptom of violating

the assertion occurs whenever there is a derivation D = G0

+

; Gk ; · · · with a
state Gk = ← (A s©, . . .)θ0 · · · θk s.t. (θ0 · · · θk)|A 6∈ γ(λProp). In other words the
assertion is expected to be satisfied for all variable bindings at s© in any possible
execution. We say that D is an assertion violating derivation. A symptom of
violating the assertion can be signaled by compile-time checking whenever the
static analysis produces an abstract substitution λ at s© (for all concrete θ at
s© θ ∈ γ(λ)), s.t. λ 6v λProp.

We are interested in finding the reason for the symptom. We say that a
derivation state Gl = ← (B e©, . . .)θ0 · · · θl (l < k), and the corresponding pro-
gram point e© contribute to the symptom at s© iff for any substitution θ there
is a sub-derivation D′ of an assertion violating derivation D which is of the
form ← (B e©, . . .)θ

+

;← (A s©, . . .)θθ′l+1
· · · θ′k s.t. (θθ′l+1

· · · θ′k)|A 6∈ γ(λProp).
D′ differs from the appropriate part of D only in computed substitutions. We
assume the same clauses are selected in corresponding steps. By replacing the
input substitution θ0 · · · θl by a universally quantified substitution θ we try to
determine whether the source of violating the assertion lies between derivation
states Gl and Gk or it is instead propagated from states preceding Gl along with
the substitution θ0 · · · θl. Note that the initial state G0 always contributes to
the symptom. This however is not useful for locating bugs. We define a binding
error as a derivation state (and the corresponding program point) for which the
sub-derivation D′ has the shortest possible length. A binding error indicates a
program point where a variable binding takes place which eventually leads to
the symptom. Note that the actual symptom might be due to some other (non-
binding) error which we are not able to detect. Nonetheless, we provide a strong
indication that the actual error should be searched between the binding error
and the symptom.

Our objective in this paper is to locate binding errors statically. The start-
ing point of the error diagnosis process is compile-time assertion checking based
on the output of the abstract interpretation framework. Interestingly, although
abstract interpretation in general provides only safe approximations of the prop-
erties, in practice it is often possible to definitely prove or disprove an assertion.
The latter case occurs when we have λa uλProp = ⊥. In those cases we say that
λa is incompatible with the expected property λProp (we will use this notion later
in our diagnosis algorithm) and we have a definite error. However in some cases
the system will not be able to prove or disprove a given assertion (λa 6v λProp

and λauλProp 6= ⊥). In this case the system allows the user to choose (via flags)
whether this should be considered an error, a warning, or be ignored. Our prac-
tical experience (and we understand it is also that of for example the ASTREE
developers [8]) is that these cases are often actual symptoms, even if sometimes
they are not and the “false alarm” is simply due to loss of precision in the anal-
ysis. Herein we will consider such cases indeed as symptoms, and start diagnosis
for them, and will accept that in some cases no real error will be responsible for
them, in which case we will guarantee that the diagnosis procedure will never



locate such a non-existing error and will simply report that no error could be
found.

5 Traversing abstract and–or graphs

The core of our binding error searching procedure consists of traversing (parts
of) an abstract and-or graph and performing abstract operations, resulting in
abstract substitutions, in a similar way that they are performed during analysis.
Therefore, we will need a notion of traversing an abstract and-or graph, and, at
the same time, replacing existing abstract substitutions with the newly generated
ones.

In the following, an abstract and-or graph R with all substitutions replaced
by λ> will be denoted by R>.

Definition 1 (Forward traversal of an abstract and-or graph R. Defin-
tion of transition ⇒R).

Let ⇒R be a transition over nodes of an abstract and-or graph R:

(Entry) 〈λ′
j−1, B

′
j , λ

′
j〉

OR ⇒R 〈λc, H, λs〉
AND if H ∈ children(B′

j)
λadd := Aunif(B′

j , H, λ′
j−1)

λc := Aproj(λadd, vars(H))
(Enter Body) 〈λc, H, λs〉

AND ⇒R 〈λ0, B1, λ1〉
OR if B1 ∈ children(H)

λ0 := Aextend(λc, vars(H ← B1, . . . , Bn))
(Move Right) 〈λi−1, Bi, λi〉

OR ⇒R 〈λi, Bi+1, λi+1〉
OR if ∃H ′, {Bi, Bi+1} ⊆

children(H ′)
(Exit Body) 〈λn−1, Bn, λn〉

OR ⇒R 〈λc, H, λs〉
AND, if Bn ∈ children(B) and

|children(B)| = n (i.e., Bn is the rightmost child of H)
λs := Aproj(λn, vars(H))

(Exit) 6 〈λc, H, λs〉
AND ⇒R 〈λ

′
j−1, B

′
j , λ

′
j〉

OR, if H ∈ children(B′
j)

λadd := Aunif(H,B′
j , λs)

λext := Aextend(λadd, vars(H ′ ← B′
1, . . . , B

′
n′))

λ′
j := Aconj(λc, λext) 2

We will omit the subscript R in⇒R if it is clear from the context. We extend the
⇒R relation to a traversal over a finite sequence of nodes s = [s1, . . . , sn], which

will be written as
s
⇒R, and defined as follows: s1

s
⇒R sn iff ∀1≤i<n.si ⇒R si+1,

The “:” operator will denote concatenation of node sequences. For a given s, s>

will denote a sequence of nodes identical to s but with all substitutions replaced
by λ>.

The
s
⇒ relation is a basis for our binding error searching algorithm. Note

that
s
⇒ mimics the basic operations performed by abstract interpretation, and

therefore safely approximates the concrete semantics. In the following an abstract
and–or graph is called fresh if it has been adorned directly by the abstract
interpretation process, i.e., no node has been modified by

s
⇒ afterward.

6 This operation differs from the corresponding one used in constructing the whole
graph (cf. [3, 20, 15]), as we propagate the success substitution from one clause only.



Lemma 1. Let R be a fresh abstract and-or graph, resulting from analyzing
a program P . Assume an or-node N = 〈λi, A, λi+1〉

OR in R. Assume also a

sub-derivation D = ← (A, . . .)θ
+
; ← (B, . . .)θθ′ which occurs when executing

P .
(i) If θ|A ∈ γ(λi) then there is a sequence of nodes s s.t. N

s
⇒ 〈λ′

j , B, λ′
j+1〉

OR

and θθ′|B ∈ γ(λ′
j).

(ii) Moreover, there is a corresponding or-node N ∗ = 〈λ>, A, 〉OR and a se-

quence of nodes s> in R> s.t. N∗ s>

⇒ 〈λ∗
j , B, 〉OR and θθ′|B ∈ γ(λ∗

j ). (Obvi-

ously, we have λ′
j v λ∗

j .)
We say that s and s> approximate a sub-derivation D.

Corollary 1. Take the assumptions of Lemma 1. Part (ii) holds for all θ.

Since
s
⇒ performs the same sequence of abstract operations as the entire

abstract interpretation process but limited to one specific path in the abstract
and-or graph, it is evident that every step of

s
⇒ generates abstract substitutions

that are not more general than those produced by the static analyzer. In other
words,

s
⇒ never loses precision with respect to the full analysis process.

Now we justify applying
s>

⇒ to locate binding errors.

Proposition 1. Let . . . , Bi a©Bi+1, . . . be a fragment of a clause body in the
program P where λProp is an expected property at point a©. Let R denote a
(fresh) abstract and-or graph obtained by the static analysis of P . Assume also
that there exists in R> a sequence of nodes s> and an or-node with atom B′,

s.t. 〈λ>, B′, λ>〉OR s>

⇒ 〈λ∗
i , Bi+1, 〉

OR

If λ∗
i u λProp = ⊥, and if there exists a sub-derivation D reaching a© and

approximated by s> then D contains a symptom at a©. Moreover a derivation
state with B′ as the leftmost atom and with the corresponding substitution is a
binding error related to the symptom.

PROOF: Follows from Corollary 1. 2

Notice that even though the
s
⇒ relation approximates the concrete semantics it

is finer grained in the sense that
s
⇒ distinguishes steps taken as one in an SLD

derivation. The steps are selecting atoms in a resolvent, entering and exiting
clauses. In fact, a starting node of a

s
⇒ traversal does not have to be an or-

node, it can be an and-node as well. This gives us an opportunity to locate some
errors more precisely than would be captured by the SLD resolution semantics.

6 An example

In this section we explain informally, in terms of an example, how the
s
⇒ transi-

tion is used to locate binding errors. The general idea is to traverse the abstract
and–or graph starting from the symptom, and moving against the direction of
execution, in DFS fashion. This makes it feasible to examine only those nodes
which are involved in the (abstract) execution prior the symptom, and therefore
only those which may potentially contain an error.



slowsort(L,S) :- perm(L,S), sorted(S).

perm([],[]).

% There is a bug here:

perm(L,[H,L1]) :- del(L,H,L2), perm(L2,L1).

del([H|L],H,L).

del([H|L],E,[H|L1]) :- del(L,E,L1).

sorted([]).

sorted([_]).

sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

Fig. 2. An erroneous slowsort program.

To illustrate the algo-
rithm let us consider the
following slowsort exam-
ple, depicted in Figure 2.
slowsort is a program
that is meant to sort a
list of numbers by first
generating a permutation
of the input list and then
checking whether the gen-
erated permutation is a
sorted list. The predicate
perm/2 generates per-
mutations by removing
non-deterministically an
element from the list (predicate del/3) and then calling itself recursively for
the rest of the list. The test that checks if the list is sorted is performed by
sorted/2. This code can be augmented with an entry declaration: :-

entry slowsort(A,B) : list(A,num).

which declares an intended initial call pattern to the top-level/exported
predicate (cf. [21]). The entry declaration is used by the static analyzer as the
starting point of the (top-down) analysis graph.

Observe that the head of the second clause of perm/2 contains a binding
error: the head should look like: perm(L,[H|L1]). The error results in a run-
time exception (“illegal arithmetic expression”) raised when the computation
reaches the library predicate =</2 in the third clause of sorted/1, since the
second element Y of the input list is a list itself, rather than a number, as one
would expect. In the Ciao system libraries (which subsume the classical notion
of “built-ins”) predicates are equipped with assertions specifying their expected
call and success patterns. Therefore, the expected value of Y is known to the
diagnoser (thanks to the modular nature of analysis) without any prior effort
from the user. In fact, static assertion checking [22] is able to detect that the
value of Y is of type rt21, defined by the following regular term grammar rules
(see, e.g., [9]):

rt21→ [ ]
rt21→ [num, rt21].

with the meaning that a term of type rt21 is either an empty list or a two-
element list, with the first element being a number and the second one being a
term of type rt21. Therefore the value of Y is not compatible with the expected
type arithexpr (arithmetic expression) which appears in the assertion for =</2.
Let this point be the starting symptom for our diagnosis session.

A part of the abstract and-or graph R generated by the analyzer is de-
picted in Figure 3. Abstract substitutions have been left out for the sake
of readability. The root or-node 1© corresponds to the entry declaration.
The starting point of the diagnosis is the illegal call to =</2 in the clause:

sorted([X,Y|L]):- X =< Y, sorted([Y|L]).
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perm(L,[H,L1])

perm(L,S)

perm(L2,L1)

del(L,H,L2)

slowsort(A,B)

slowsort(L,S)

sorted(S)

perm([],[])

sorted([_1])

sorted([X,Y|L])

X =< Y

sorted([Y|L])

sorted([])

Fig. 3. A part of the abstract and-or graph R, an output of the analysis of the slowsort
example from Figure 2.

which corresponds to node 12©. Observe that node 13© has no descendants, as
the call to X =< Y never succeeds, and computations never reach the goal
sorted([Y|L]). During the diagnosis process we build a sequence of visited
nodes, moving backwards, as discussed in Section 5. We will traverse the graph
R>, starting with the and-node 9©, as 12© is its child. Let the constructed se-
quence of nodes be s. Initially s contains one node:

N9 = 〈{X/>, Y/>, L/>}, sorted([X, Y|L]), {X/>, Y/>, L/>}〉AND

We keep the indexing of N ’s consistent with Figure 3. At this point we have
reached the head of the clause, i.e., we have to find a calling atom, which is a
parent or-node 4©. We add the node

N4 = 〈{S/>}, sorted(S), {S/>}〉OR

to the sequence s. We need to determine if entering the clause, i.e., perform-
ing (abstract) unification when matching a calling atom and the head of clause,
could cause the error symptom. To achieve this we run abstract operations cor-
responding to entering the clause from node 4© to 9© (i.e., we do the traversal

N4

s
⇒ N9 with application of rule Entry of Definition 1). As a result, variable Y

is given value > in 12©. This is not incompatible with arithexpr and we cannot
conclude that the node 4© supports our symptom. Thus we keep on traversing
the graph towards and-node 2©, and the left sibling of 4©, i.e., to or-node 3©:

N3 = 〈{L/>, S/>}, perm(L, S), {L/>, S/>}〉OR

We now have s = [N3, N4, N9], which corresponds to succeeding in perm(L,S).
Nothing is assumed at this point about the values of L and S. The diagnoser
checks whether erroneous bindings could be propagated through these vari-
ables from one of the clauses defining perm/2. In order to achieve this a child



(and-node) of 3© is selected. Assume that 6© has been taken first. Now we
have to check if the (abstract) unification performed when exiting the clause

perm(L,[H,L1]) :- del(L,H,L2), perm(L2,L1).

can cause the symptom. Traversal N6

s
⇒ N9 is performed, using the appro-

priate rules Exit, Move Right, Entry (see Definition 1). As a result, vari-
able S obtains a type of two-element list composed of >. Thus, Y is given
value > again and nothing can be concluded yet about an error causing the
symptom. After performing two more steps we reach 6© again and we have
s = [N ′

6, N11, N6, N3, N2, N4, N9], where each node contains related atoms with
appropriate top-most abstract substitutions (we rename apart two copies of 6©).

After performing traversal N ′
6

s
⇒ N9 the variable Y is abstractly bound to the

type t defined as: t→ [>,>]. This is now incompatible with the expected prop-
erty arithexpr and the diagnoser signals that 6© supports the symptom. More
precisely, the point of exiting the second clause of perm/2 after recursive call
from the same clause causes the symptom. In other words, we are sure that
whatever execution follows the nodes of s it will cause a run-time error at X =<

Y.
Note that the diagnoser performs non-deterministic choices in or-nodes. In

fact, our system returns a second answer as a potential source of the symptom:
the point exiting the first clause of perm/2 after the recursive call. The corre-
sponding sequence of nodes is s = [N5, N11, N6, N3, N2, N4, N9]. This program
point appears counterintuitive, and obviously is not an actual error. Neverthe-
less, observe that writing for example perm([],2) instead of perm([],[]) would
make the goal ?- slowsort([1],L) succeed without the run-time error.

7 Binding error searching algorithm

In this section we present the actual algorithm for finding binding errors. The
algorithm makes use of the

s
⇒ transition introduced in Section 5, as illustrated

in the example of the previous section.
The diagnosis procedure is shown in Algorithm 1. The algorithm takes as

input an abstract and–or graph R, a clause containing a symptom at the
given program point, and an expected property at that point. The set E of
program points supporting the symptom is returned as output. The algorithm
consists of the main module (lines 1-3) and two mutually recursive procedures
search AND(A, i, s) and search OR(A, s), which implement the traversal of the
graph against the control flow.

The search OR(O, s) procedure takes the atom O in the or–node, and the
sequence s of nodes visited so far, i.e., the nodes following O in the control-flow
order. Then, for every child (an and–node) A of O, A is concatenated with
s and the algorithm verifies whether the transition ⇒ over the new sequence
of nodes leads to a violation of the expected property at the program point
of the initial symptom (line 25). Note that we collect nodes from R> rather
than from R. This allows us to differentiate abstract substitutions generated
in the analysis phase from those generated during the error location step. I.e.,



Algorithm 1 – The diagnosis algorithm.

Input:

– analysis output in the form of an abstract and–or graph R,
– a clause Cs = Hs ← Bs

1 , . . . , Bs
ns

,
– an index (program point) 1 ≤ is ≤ ns,
– an expected abstract substitution λProp at the program point between Bs

is
and

Bs
is+1, (or after Bs

ns
if is = ns).

Output: a set of binding errors E .

1: E := ∅, Visited := ∅
2: let A := 〈λ>, Hsσ, λ>〉AND be an and-node in R> corresponding to clause Cs,

where σ is a renaming substitution
3: search AND(A, is, [A])

4: procedure search AND(A, i, s) {A: and–node, i: index, s: sequence of nodes}
5: if i = 0 then

6: let O be an or–node s.t. A ∈ children(O) in R>

7: s′ := [O] : s

8: if O
s′

⇒ 〈λ, Bs
is+1, λ

>〉AND and λ u λProp = ⊥ then

9: E := E ∪ {entry(O, A)}
10: else

11: let A′ be an and–node in R> s.t. O is the j-th child of A′

12: if (O, A′) 6∈ Visited then

13: Visited := Visited ∪ {(O, A′)}
14: search AND(A′, j − 1, [A′] : s′)
15: end if

16: end if

17: else if (A, O′) 6∈ Visited then

18: Visited := Visited ∪ {(A, O′)}
19: let O′ be the i-th child of A

20: search OR(O′, [O′] : s)
21: end if

22: procedure search OR(O, s) {O: or–node, s: sequence of nodes}
23: for all A ∈ children(O) in R> do

24: s′ := [A] : s

25: if A
s′

⇒ 〈λ, Bs
is+1, λ

>〉AND and λ u λProp = ⊥ then

26: E := E ∪ {exit(A, O)}
27: else

28: n := |children(A)|
29: search AND(A, n, s′)
30: end if

31: end for

we are able to identify if the problem causing the assertion violation is within
the current sequence of visited nodes (ideally in the first one in the sequence).
If we take a node from R the variable bindings that cause the problem might
have been placed in the current node or they may have been propagated from
the preceding (in control-flow sense) nodes through abstract substitutions. By



using R> we “isolate” abstract values of the current nodes from the ones in the
preceding nodes. If A supports the symptom the term exit(A,O) is added to E
to indicate that the critical binding occurs when the (abstract) execution leaves
a clause with head A after completing call O. Otherwise, the search AND(A,n, s)
procedure is called which performs similar actions in an and–node.

The search AND(A, i, s) procedure performs one step of backwards traversal
of an instance of a clause with head A. The body atom in question is determined
by the index i. If the clause body has already been traversed (i = 0, line 5),
the or–node O corresponding the call to A is found and the algorithm checks
whether entering the clause from O causes the symptom (line 8). If true, then,
similarly to the or–node case, the term entry(O,A) is recorded in E (line 9).
Otherwise, the search continues in the upper and–node A′ (A′ is a head and O a
body atom of the same clause) with the index value j−1 pointing to the atom just
before O in the clause body (line 14). If i > 0 when calling search AND(A, i, s),
then the or–node corresponding to the i-th atom in the body is inspected.
Note that when search AND is called from inside search OR (line 29) the second
argument is set to n, i.e., to the length of the corresponding clause body. The
reason for this is that we want to examine the last atom in the body first, in
order to find an atom supporting the symptom located as close as possible to
the symptom.

As the and–or graph may contain cycles, the algorithm keeps track of visited
nodes using for that purpose the global variable Visited. Observe, however, that
and–nodes can be visited multiple times during traversal of the graph, and
therefore we need to store not only a node but also a node visited in the previous
step of the current traversal. That is why the elements of Visited are pairs of nodes
rather than individual nodes.

8 Conclusions and future work

We have implemented a prototype of the diagnoser in Ciao [4] and integrated it
into the Ciao Preprocessor, CiaoPP [14], whose abstract interpretation engine,
PLAI [20, 15]. The diagnoser makes use of abstract operations of PLAI and
its data structures. The diagnoser inherits the parametric nature of the PLAI
system, which allows the addition of arbitrary abstract domains as plugins. As
a consequence of this the symptoms for which errors can be localized range over
the same properties that can be inferred with the different domains available
in the system: types/shapes, instantiation modes, pointer aliasing and structure
sharing, determinacy, non-failure, etc.

The efficiency of the diagnosis procedure seems to be satisfactory, at least for
the relatively small-sized programs that we have tested to date. For the slowsort
example from Section 6, for example, the diagnosis time, including searching
for all the errors, was 9.33 ms., compared to 34.66 ms. taken by the analysis.
For standard quicksort the diagnosis took 205.97 ms. and analysis 92.98 ms. For
another version of quicksort, i.e., with a different error, we measured 3457.47 ms.
for diagnosis and 333.94 ms for analysis. Diagnosing the same bug starting from



two other, different symptoms took 2474.62 ms. and 1185.82 ms. respectively.7

Further benchmarking of the system is planned as future work.
Inevitably, as shown in Section 6, our system may identify several points

as sources of an error symptom. Not all of them are actual errors in the sense
of the user’s expectations, but they are all reasons for the symptom. Also, due
to the approximate (but safe) nature of reasoning in abstract interpretation
and consequently in our algorithm, we are not guaranteed to find sources for
every symptom. In particular, this happens when the abstract value inferred
by the analyzer at the point of the symptom is >. This problem can often
be overcome by adding more assertions to the program (something which may
encourage programmers to write more assertions). In this case the assertions
holding expected properties can guide the diagnosis process.

In principle, a similar effect to that achieved by our error location method
could be achieved by means of backward analysis [17], and this was indeed the
first solution that we considered. However, backwards analysis requires the defi-
nition of new and relatively complex operations on the abstract domain. In addi-
tion, the abstract domains used must be condensing, which is a property satisfied
only by a reduced number of the domains used in practice. Our approach allows
using an arbitrary abstract domain, and simplifies the implementation since it
reuses the standard operations which are already defined in the system for each
domain. We argue that this is a practical advantage, worth taking perhaps some
performance penalty.
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