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Abstract—Constraint-based Quality of Service (QoS) pre-
diction is a method for predicting violations of Service Level
Agreements (SLAs) in an executing instance of a service
orchestration. It uses assumptions about the ranges of QoS val-
ues for component services in the orchestration. Experiments
suggest that the method, when given correct component QoS
assumptions, produces highly accurate predictions according
to a series of quality-of-prediction metrics, and that it does
so well ahead of the time when the prediction is to happen.
We study the behavior of this method when the component
QoS assumptions become incorrect or too vague. We conclude
that the effect is a graceful deterioration in prediction quality,
unless gross (order-of-magnitude) imprecisions are introduced.
However, the method is very sensitive to the loss of information
on the lower bounds for component QoS values, since the
knowledge of the upper bounds is not sufficient for failure
prediction.

Keywords: Service orchestration; Quality of service; Prediction;
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I. INTRODUCTION

In service-oriented applications, service compositions
are used to perform complex, higher level, or cross-
organizational tasks in a platform-independent manner, using
loosely coupled component services. An important aspect
of composition usability are its Quality of Service (QoS)
properties, such as execution time or availability, and their
permissible value ranges which, when relevant, are defined
in Service Level Agreements (SLAs) between service users
and providers.

Predicting an SLA violation at run time, for a given
executing instance of a service orchestration, allows service
providers to act proactively, plan ahead, and initiate instance-
level adaptation that may try to avoid the SLA violation
or to mitigate its undesirable effects. Constraint-based QoS
prediction for service orchestrations [1] is a method that
can be used for that purpose. As shown in Figure 1, it can
be instrumented as a two-stage process which repeats itself
until the orchestration finishes. In the first step, a constraint
satisfaction problem (CSP) [2] is constructed. It models the
QoS, such as the execution time, for the entire orchestration,
based on two key pieces of information. The first one is the
continuation, which describes what remains to be done until
the end of the executing instance, as well as the current
data items. The CSP is derived from the structure of the
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Figure 1. The steps in the constraint-based QoS prediction approach.

continuation, by establishing logically sound relationships
(constraints) between the numeric QoS values of complex
constructs (sequences, branches, loops, parallel flows) and
those of their components.

The second important ingredient of the CSP are the as-
sumptions on the upper and lower bounds of the component
service QoS value ranges. Since we build constraints based
on crisp logical reasoning with equalities and inequalities,
and not on statistical reasoning about the expected or
most probable values, we require only the bounds and not
the information regarding the statistical distribution of the
component QoS values between them. The accuracy of the
assumed bounds tells us the probability that the empirically
measured component QoS falls inside these bounds: fully
accurate assumed bounds contain all possible component
QoS values, while less accurate ones leave out some of them.
For accurate bounds, one set of assumed bounds is more
precise than another one if it is contained in the latter, i.e.,
it is tighter. Ideally, the most precise and accurate assumed
bounds define the tightest interval containing the possible
QoS values.

In the second step of our prediction method, the CSP is
solved against an SLA objective, which is typically a limit
imposed on the QoS of the remainder of the executing or-
chestration. We consider two cases: when the SLA objective
is met (OK), and when the SLA objective is violated (FAIL).
When one of the cases is proven unsatisfiable, the other one
is necessarily satisfied (resp., FAIL or OK) and is used as
the prediction.

A number of factors may affect the quality of the
constraint-based QoS prediction. In this paper, we explore



the impact of inaccuracy and imprecision of the assumed
component QoS bounds, in an attempt to find out how these
factors can be expected to reflect on the quality of prediction,
i.e., how robust the constraint-based approach is with respect
to suboptimal assumptions about the outside world.

Other approaches for predicting SLA violations in service
compositions have been proposed. Some of them [3], [4] rely
on statistical reasoning, and use data mining to build models
of the QoS of orchestrations from the historically recorded
execution data. Other approaches [5] rely on monitoring and
online testing [6], and yet others use run-time verification
based on model checking [7], [8]. While these proposals
differ from the constraint-based approach in a number of
respects, we tried to follow some common methodologies
for evaluating quality of prediction.

We proceed by first motivating the experimental approach
used, then presenting the evaluation framework and the ex-
perimental results, and, finally, providing some conclusions.

II. MOTIVATION

To assess the impact of inaccurate and imprecise assump-
tions on the QoS of the components on the quality of the
constraint-based prediction, it is useful to establish a baseline
case against which the comparison is made. In the baseline
case, we use the most accurate and precise component QoS
assumptions, and measure the quality of prediction obtained
under such ideal conditions. Still, the results in the baseline
case will depend on a number of factors, the most important
ones being the structure and logic of the orchestration itself,
and the particular constraint solving domain or technique
used for the prediction. The latter is briefly commented upon
in Section III-C.

In this paper, we base our evaluation on an industrial ser-
vice workflow, proposed by Leitner et al. [9] in the context of
fault prediction based on data-mining and cost-optimization
of service composition adaptations.1 This service workflow
uses 18 component services to handle order processing,
manufacturing, billing, quality control, and shipment tasks in
an on-demand production line scenario. The control structure
of the orchestration contains some of the typical control
constructs that can be found in real-world orchestrations:
branching, looping, parallel flow control constructs, and
sequential chains of activities. We look at the execution time
as the QoS attribute of interest.

The first question is how to measure the quality of
prediction in the baseline case. We need to establish a set of
indicators (also known as prediction quality metrics) such as
precision, accuracy, and recall, and, besides, to look at how
long before the predicted event the prediction was made,
which is clearly very important for adaptation. The accuracy
and precision of prediction is of course different from the

1More details are available at
http://www.infosys.tuwien.ac.at/prototypes/VRESCo/
experimentation
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Figure 2. Lack of accuracy and precision in the estimation of QoS bounds.

accuracy and precision of the assumptions on which the
prediction is based.

A second issue is how to define the situations where the
assumptions on the QoS of some component differ from the
real bounds. The bounds we work with can be tighter than
the actual ones, and thus they may not contain some of the
values that the actual QoS can take, but all points in the
range are valid. A representation of the situation is labeled
as inaccurate in Figure 2. It is also possible that all valid
values lie inside the range, but some points in the range are
not valid. This is labeled imprecise in Figure 2. Estimated
ranges can also mix approximations in different directions
in both extremes.

III. EVALUATION FRAMEWORK

A. Experimental Setup

The knowledge of precise and accurate bounds of the QoS
of a component is generally only possible a posteriori or
post mortem. For that reason, and also to ensure that all other
factors remain equal when introducing inaccuracies and
imprecisions in the assumptions, we based our experiments
on execution logs from 100 runs of the sample industrial
orchestration, which had approximately 160 events recorded
per instance.

The prediction was simulated by feeding the time-stamped
events from the log for each instance to the constraint-based
predictor in the same manner as it would be done at run-time.
At each point of prediction, the continuation was constructed
from the known original structure of the orchestration and
the events observed in the log.

For the baseline experiment under precise and accurate
assumptions, we have used the minima and maxima of the
component running times recorded in the logs.

Experiments were conducted against a number of execu-
tion time limits (SLA objectives), which were chosen based
on the recorded running times in the logs to ensure that a
certain percentage of the 100 instances violated the limit.
These percentages, the failure rates, ranged from small and
moderate ones (1%, 5%, 10%) to relatively high ones (20%,



33%) and were, for completeness and observation of trends,
extended to unrealistically high ones (failure rates ≥ 50%).

The average time spent to make about 160 predictions per
instance was between 283 ms to 491 ms, which corresponds
to between 1% and 2% of the average instance running
time.2 This suggests that the prototype implementation of the
predictor does not impose a significant prediction overhead.
The first OK / FAIL prediction for every instance was taken
as the definitive one.

B. Prediction Quality Metrics

Different measurements can be used to assess the quality
of prediction of SLA violations. In our approach we use
the evaluation metrics proposed by Salfner et al. [10] in
a recent study of online failure prediction methods. All
of these metrics are based on counting true positives (TP,
failure predicted and occurred), false positives (FP, failure
predicted, but did not occur), true negatives (TN, non-failure
predicted and no failure occurred), and false negatives (FN,
non-failure predicted, but failure occurred). To these, we add
the cases labeled UP (number of successes when the method
could not predict either OK or FAIL) and UN (number
of failures in a similar case) All of these metrics are real
numbers between 0 (the worst case) and 1 (the best case).
We proceed by explaining each one of them in turn.
• Precision p = TP/(TP+FP): when we have a decision

on a failure, how precise can we expect it to be?
• Negative predictive value v = TN/(TN + FN): how

many success predictions turned out correct.
• Recall r = TP/(TP + FN + UP): how many failures

were correctly predicted.
• Specificity s = TN/(TN +FP+UN): how many suc-

cesses were correctly predicted (a counterpart to recall).
• Accuracy a = (TP+TN)/(TP+FP+UP+TN +FN +

UN): how many instances were correctly predicted.
Since in most failure prediction techniques there is a trade-

off between precision and recall, as pointed out by Salfner et
al. [10], a harmonic mean between these two metrics, known
as F = 2pr/(p+ r), can be introduced. In our case, it also
tends to have a value close to 1. (We defer discussion of
some additional adaptation-specific metrics to Section IV-D.)

C. Choice of Constraint Solver

In our experiment, we used the Eclipse CLP system [11]
with its interval constraint (ic) solver, which is licensed
as open source and freely available. The solver supports
linear and non-linear arithmetic constraints (equalities and
inequalities) over real and integer variables that range over
intervals of finite or infinite size (with the finite domain
as the special case). These capabilities fit well with the
shape of the CSP generated from the continuation [1],

2The experiments were performed on a low-end Intel x64 machine with
solid-state disk and 4GB RAM, running Mac OS X 10.7.3.

which may contain non-linear (min/max, multiplicative) and
disjunctive constraints, and where ranges of the component
QoS values are represented as intervals. Other, publicly and
commercially available constraint solvers can be used as
well, as long as they have can express the same kind of
constraints, or in special cases where the constraints can be
simplified, e.g., made linear.

Some constraint solvers are better suited for some con-
straint domains and classes of constraints than the others.
The results obtained from constraint solvers are sets of
values for the constrained variables that are always complete
(no solution is left out), but maybe not correct (they may
contain values that are not part of any solution [2]). More
precise constraint solvers would be able to narrow down the
value sets closer to the actual answers, and consequently
can detect inconsistent constraints stores, which translates
in more precise failure or success predictions.

For our evaluation, the prediction of SLA violation or
success depends on the ability of the constraint solver to
deduce unsatisfiability in either the OK or FAIL case of
the CSP from Figure 1 as early as possible in the lifetime
of the executing instance for which the prediction is made,
as discussed in the Section IV-C. The results in this paper
illustrate what can be done with a state-of-the-art, open
source constraint solver, but do not rule out a better quality
of prediction with more advanced solvers or in special (e.g.,
linear) cases.

IV. EXPERIMENTAL RESULTS

A. Baseline Case

The quality prediction metrics for the baseline case (i.e.,
using the most precise accurate assumptions about the
bounds of the component QoS value ranges) are shown in
Table I. Columns u and m are treated in Section IV-D.

Precision p tends to increase with the fault rate, because
at small fault rates the SLA failures are so rare that even
a single false positive diagnosis constitutes a significant
proportion of the predicted failures. Recall r also tends to
be a value close to 1, generally higher than p, except for the
fault rate 10%, where unpredicted positives (UP) constitute
a significant fraction of true positives (TP). The F-measure
ranges between p and r and it amplifies the effects of the
worse among them. Specificity s and negative predictive
value v maintain values close or equal to 1 across all failure
rates. The accuracy a is consistently high across failure rates,
and for the low to medium failure rates (between 0% to 10%)
it ranges between 97% and 99%.

B. Simulating Inaccurate and Imprecise Assumptions

To compare with the baseline case, we run a number
of experiments with inaccurate and imprecise assumptions
(Figure 2). For clarity of data presentation, the results pre-
sented in the text that follows do not mix over-approximation
of one bound with under-approximation of the other bound.



Failure Results Basic Metrics Aggregate Metrics
rate (%) TP FP TN FN UP UN p r s v a F u m

0 0 0 99 0 0 1 – – 0.9900 0.9900 0.9900 – – –
1 1 1 98 0 0 0 0.5000 1.0000 0.9899 1.0000 0.9900 0.6667 0.6644 1.0000
5 5 1 94 0 0 0 0.8333 1.0000 0.9895 1.0000 0.9900 0.9091 0.9047 1.0000

10 7 0 90 0 3 0 1.0000 0.7000 1.0000 1.0000 0.9700 0.8235 1.0000 0.8235
20 17 2 78 0 3 0 0.8947 0.8500 0.9750 1.0000 0.9500 0.8718 0.9331 0.9189
25 24 1 74 0 1 0 0.9600 0.9600 0.9867 1.0000 0.9800 0.9600 0.9732 0.9796
34 33 2 64 0 1 0 0.9429 0.9706 0.9697 1.0000 0.9700 0.9565 0.9561 0.9851
50 49 2 48 0 1 0 0.9608 0.9800 0.9600 1.0000 0.9700 0.9703 0.9604 0.9899
67 66 2 30 0 1 1 0.9706 0.9851 0.9091 0.9677 0.9600 0.9778 0.9388 0.9763
75 71 2 23 0 4 0 0.9726 0.9467 0.9200 1.0000 0.9400 0.9595 0.9456 0.9726

100 100 0 0 0 0 0 1.0000 1.0000 – – 1.0000 1.0000 – –

Table I
COMPARATIVE INDICATORS FOR QUALITY OF PREDICTION IN THE CASE OF THE MOST PRECISE AND ACCURATE COMPONENT QOS ASSUMPTIONS.

Figure 3 shows the comparison of precision, accuracy,
specificity, and recall for three groups of inaccurate and
imprecise assumptions. The first group of tightly clustered
thick lines in the top part of each graph, marked with
empty and full circles, pluses, and asterisks, correspond
to predictions that were based on inaccurate assumptions.
The baseline component ranges [a,b] are here replaced with
tighter ranges [a′,b′], a < a′ < b′ < b, that cover 98%, 90%,
80%, 50% and 30% of the original range [a,b].

The great degree of overlap between the lines in this group
can be explained, in our experiment, by looking into the
distributions of the execution times for individual service
components. It turns out that the spread of these time ranges
is measured in tens or hundreds of milliseconds, i.e., it
is about two orders of magnitude smaller when compared
to the total orchestration execution time. Therefore, under-
approximating such already narrow ranges does not have a
big impact on the generated constraints. In other situations,
where components have larger QoS value spreads, deviations
from the baseline due to under-approximation should be
expected to be greater than in our experiment.

The second group of lines are dashed and correspond to
the cases of accurate, but imprecise assumptions where the
baseline component ranges [a,b] are replaced with wider
ranges [a/k,b× k],where the lower and the upper bound
are under- and over-approximated, respectively, by factor
k that is 1.5 (�), 2 (♦) and 10 (�). While the first two
over-approximation factors exhibit gradual, but not radical,
deterioration of prediction quality, the latter is an order-of-
magnitude over-approximation which leads to significantly
worse prediction quality, which is hardly unexpected.

The third group are the thin solid lines on the graphs
that also correspond to the cases of accurate, but imprecise
assumptions, but differ from the second group of lines in
that the baseline component ranges [a,b] are here replaced
with even wider ranges [0,b× k], where the lower bound is
lost, and the upper bound is over-approximated by a factor k
that is 1 (M), 1.5 (O) and 2 (N). (Due to overlapping, these
appear as 6-spike stars on some graphs.)

It turns out that loosening the lower bound, however small,
hurts

prediction quality even more than an order-of-magnitude
over-approximation of the upper bound. The reason for this
is that an assumed lower bound of 0 prevents the constraint-
based predictor from discarding the case when there is
definitely no failure, and therefore the predictor is unable to
predict failure in a large number of cases. The importance of
the lower bounds in constraint-based prediction is therefore
at odds with the usual perception that upper bounds are key
predictors of failures.

C. Prediction Timing

Figure 4 shows the distribution of the time at which a (true
or false) negative prediction was made, measuring from the
orchestration start across different SLA failure rates for the
baseline case. The red line above represents the time limit
for each fault rate. For small and medium fault rates, the
picture shows that on average the predictor was able to issue
a negative prediction relatively early, approximately within
one fifth of the instance execution time. Only for very large
failure rates (50% and over) the prediction was made much
later, closer to the execution time limit. The reason for that
is that, other things being equal, a higher execution time
limit makes it easier for the constraint solver to discard the
possibility of an SLA violation.

The left graph of Figure 5 compares the average true neg-
ative prediction times between the three group of inaccurate
assumption cases, and the two groups of accurate, but im-
precise ones (using the same markings as before). Again, the
inaccurate cases behave closely to the baseline case, while
a later prediction due to the loss of precision is visible in
the cases of imprecision (with and without the lower bound).
The worst case here is the tenfold over-approximation, which
produces the most delayed true negative predictions.

Figure 6 shows the distribution of lead times between the
(true or false) positive predictions and the SLA running time
limit, for the baseline case. The results suggest a relatively
stable average lead time of about 9 sec. across the failure
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Figure 3. Comparative measures of prediction quality for inaccurate and imprecise assumptions.

rates, which corresponds to about one fourth of the average
instance execution time. Of course, whether such lead time
is sufficient for adaptation purposes depends on the type of
adaptation to be employed. Figure 5, right, shows the com-
parison between the average true positive prediction time
leads under inaccurate and imprecise assumptions, which
qualitatively follows the precision and accuracy pattern.
The earliest true positive predictions are obtained under
the accurate assumptions (with varying precision), while
the imprecise assumptions that ignore the lower bounds are
practically unable to predict true positive before reaching the
time limit corresponding to each of the fault rates.

D. Suitability for Predictive Adaptation

The usability of a SLA failure prediction method in the
context of predictive adaptation (i.e., adaptation triggered
ahead of the actual failure with the goal to avoid it or
to mitigate its effects) depends not only on the type of
adaptation, but also on some general characteristics of the
prediction methods such as examined by Sammodi et al. [6],
who have identified several helpful metrics for that purpose.

The measure u = 2ps/(p+ s) harmonizes prediction pre-
cision and specificity, and quantifies the extent to which

the prediction method manages to avoid unnecessary adap-
tations. The values for u in Table I tend to be high and
to move in harmony with precision p, because specificity
is (in the baseline case) always equal or very close to 1.
The degradation of the u metrics under various types of
inaccurate or imprecise assumptions, shown on the left side
of Figure 7, follows a similar pattern to that of precision in
Figure 3.

The measure m = 2rv/(r + v), on the other hand, har-
monizes recall and negative predictive value, and quantifies
the extent to which the prediction method manages to avoid
missed adaptations. Again, since v is always very close to 1,
the values for m in Table I follow those of recall r. Figure 7,
right, shows that m degrades under inaccurate and imprecise
assumptions following a pattern similar to that for recall in
Figure 3.

V. CONCLUSIONS

Experiments using the prototype predictor based on a
realistic experimental service orchestration case suggest that
constraint-based SLA failure prediction, under the precise
and accurate component QoS assumptions, is a very reli-
able prediction method that offers a good combination of
precision, specificity, recall, and other quality of prediction
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Figure 4. Distribution of negative prediction times (ms).
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Figure 5. Comparative true negative/positive prediction times for inaccurate and imprecise QoS assumptions.

metrics. For reasonable failure rates, the method is able
to make an early prediction of the non-failure of an SLA
according to execution time, as well as to predict failures
significantly ahead of actual failures.

When the accuracy and precision of the component QoS
assumptions deteriorates, the method’s quality of prediction
generally tends to deteriorate gracefully, unless gross (order-
of-magnitude) imprecisions are introduced. However, the
method is very sensitive to the loss of information on the
lower bounds for component QoS ranges, which tends to
decrease the quality of prediction more than a significant
over-approximation of the upper bounds. This requires spe-
cial care when collecting the component QoS information
using external sources and/or collecting events from logs
and monitoring.

The prediction quality attributes, such as precision, recall,
negative predictive value, and specificity, suggest that this
prediction method can be expected to provide a good basis
for predictive run-time adaptation with the aim of avoiding

detected failures or compensating their effects.
Our future work will aim at validating the approach in

live, production deployments, and experimentally evaluating
other possible uses for the constraint predictor, such as
reasoning on possible QoS ranges in (non-)failure cases and
detecting events in the orchestration that lead to SLA failure
or compliance.
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