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Abstract

Recently, we proposed a general framework for the cost analysis of Java bytecode which can be used for
measuring resource usage. This analysis generates, at compile-time, cost relations which define the cost of
programs as a function of their input data size. The purpose of this paper is to assess the practicality of
such cost analysis by experimentally evaluating a prototype analyzer implemented in Ciao. With this aim,
we approximate the computational complexity of a set of selected benchmarks, including both well-known
algorithms which have been used to evaluate existing cost analyzers in other programming paradigms, and
other benchmarks which illustrate object-oriented features. In our evaluation, we first study whether the
generated cost relations can be automatically solved. Our experiments show that in some cases the inferred
cost relations can be automatically solved by using the Mathematica system, whereas, in other cases, some
prior manipulation is required for the equations to be solvable. Moreover, we experimentally evaluated the
running time of the different phases of the analysis process. Overall, we believe our experiments show that
the efficiency of our cost analysis is acceptable, and that the obtained cost relations are useful in practice
since, at least in our experiments, it is possible to get a closed form solution.

Keywords: Cost analysis, Java bytecode, cost relations, recurrence equations, complexity.

1 Motivation

Having information about the execution cost [17,11] of a piece of code is quite useful;

in many cases, this aspect is crucial in choosing among different implementations

of the same specification. Moreover, this may allow certifying that the execution

of an application meets the specified resource-consumption constraints [10]. Cost

analysis is also (and especially) very useful in the context of mobile code, where

resources are very limited and we may want to accept or reject code depending on

its cost. In the limit, accepting mobile code without cost guarantees [6,12] can be a

source of denial-of-service attacks, since execution can be very (or infinitely) costly.

It is important to note that it is unlikely to have access to the source code in the

above-mentioned situations; rather, we can only directly deal with the compiled

code. Java bytecode [14] is becoming one of the most popular formats for mobile

code. Having accurate cost analyzers for Java bytecode is hence desirable.
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In general, cost analysis is far from being trivial; it takes a good amount of

expertise for programmers to have an intuition about which implementation tech-

niques might lead to more efficient programs. This is particularly difficult when

we are dealing with a low-level, object-oriented language such as Java bytecode. In

some sense, it is to be expected that automating cost analysis of Java bytecode will

not always succeed in giving meaningful results, especially for very intricate code.

Thus, one of the main questions about the cost analysis framework we have recently

proposed [5], and which we assess in practice in the present work, is whether the

generated cost relations can be automatically simplified into a closed form solu-

tion [22] when considering the simple cost model traditionally used in complexity

analysis, which counts the number of execution steps (bytecode instructions).

In order to find closed form solutions we use a state-of-the-art recurrence equa-

tions solver, the Mathematica system [1]. We study, for a series of representative

benchmarks, whether the generated cost relations can be solved by using the pro-

vided RSolve query. When this is not directly possible, we propose transformations

which make the generated equations solvable.

As regards the input language, and as in [5], we consider a subset of Java byte-

code which does not include features such as dynamic class loading, reflection, or

floating point arithmetic. Indeed, this subset basically corresponds to the CLDC,

a variant of Java for the embedded industry which stands between JavaCard and

the Java Standard Edition. We believe that CLDC is a good choice because it has

all the characteristics of a real language: true memory management, object orien-

tation, etc., while being at the same time much more manageable than the Java

Standard Edition from the point of view of the analysis. Furthermore, CLDC is

widely accepted by the industry as a runtime environment for downloadable code:

on mobile phones (MIDP), set-top-boxes (JSR 242) and smart card terminal equip-

ment (STIP).

Work on cost analysis by means of size inference has been mostly carried on in

logic [11] and functional [16] programming. Debray and Lin’s work [11] investigates

key features of logic programming and generates cost information by abstracting

the recursive structure of the program. Some recent work in functional languages

[15,21] involves using type systems in order to study size relations and infer cost

equations. In both cases, the issue of obtaining a closed form for cost relations

is not discussed in depth, and no examples of solutions are provided (although

references to the underlying mathematical theory are given). In [8], a static anal-

ysis approach for over-approximating the amount of memory allocated by source

Java-like object-oriented programs is presented. Here, object size is represented as

symbolic expressions. No cost equations are involved in such a method.

The rest of this paper is structured as follows. Sec. 2 provides an overview

of our cost analysis framework for Java bytecode [5]. Afterwards, we study three

classes of benchmarks. In Sec. 3, we analyze some well-known recursive procedures

which, due to their structure, give rise to cost relations which can be easily handled

by Mathematica. Sec. 4 deals with programs which use arrays, with both simple

and nested loops, and require some simple transformations in order to solve the

equations. In Sec. 5, we evaluate some programs with object-oriented features, like

objects and dynamic dispatching; the obtained cost relations can be handled by
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Input Java bytecode

0: iload 0

1: ifeq 9

4: iload 0

5: iconst 1

6: if icmpne 11

9: iconst 1

10: ireturn

11: iload 0

12: iconst 1

13: isub

14: invokestatic #2;

//Method fib:(I)I

17: iload 0

18: iconst 2

19: isub

20: invokestatic #2;

//Method fib:(I)I

23: iadd

24: ireturn

Intermediate recursive representation

fiba(n)← BC(Block0),(fib1(n′, s0) ; fib2(n′, s0)).

fib1(n, s0)← guard(ifeq(s0)), BC(Block1), fib5(n′).

fib2(n, s0)← guard(ifne(s0)), BC(Block2),

(fib3(n′, s′0, s
′

1) ; fib4(n′, s′0, s
′

1)).

fib3(n, s0, s1)← guard(if icmpeq(s0 , s1)), BC(Block3),fib5(n′).

fib4(n, s0, s1)← guard(if icmpne(s0 , s1)), BC(Block4),

fibb(n′), fibc(n′′).

fib5(n)← BC(Block5).

Size relations

〈fiba(n) 7→ fib1(n′, s0), {n′ = n, s0 = n}〉
〈fib0(n) 7→ fib2(n′, s0), {n′ = n, s0 = n}〉
〈fib1(n, s0) 7→ fib5(n′), {s0 = 0, n = n′}〉
〈fib2(n, s0) 7→ fib3(n′, s′0, s

′

1),

{s0 6= 0, s′0 = n, s′1 = 1, n′ = n}〉
〈fib2(n, s0) 7→ fib4(n′0, s

′

0, s
′

1), {s0 6= 0, s′0 = n, s′1 = 1, n′ = n}〉
〈fib3(n, s0, s1) 7→ fib5(n′), {s0 = s1, n

′ = n}〉
〈fib4(n, s0, s1) 7→ fibb(n′), {s0 6= s1, n

′ = n− 1}〉
〈fib4(n, s0, s1) 7→ fibc(n′), {s0 6= s1, n

′ = n− 2}〉
Output cost relation

Cfib(n) = TBlock0 + CC 0(n)

CC 0(n) =

(

C1(n)

C2(n)

〈n = 0〉
〈n 6= 0〉

C1(n) = TBlock1 + C5(n)

C5(n) = TBlock5

C2(n) = TBlock2 + CC 2(n)

CC 2(n) =

(

C3(n)

C4(n)

〈n = 1〉
〈n 6= 1〉

C3(n) = TBlock3 + C5(n)

C4(n) = TBlock4 + Cfib(n − 1) + Cfib(n− 2)

Fig. 1. Overview of the Cost Analysis Phases

Mathematica only after some transformations. Finally, Sec. 6 presents experimental

results about the time required by our analysis, and concludes the paper.

2 An Overview of Cost Analysis of Java Bytecode

We briefly recall, by means of an example, the different phases of the cost analysis

we recently proposed [5]. The running example is shown in Fig. 1; it corresponds to

a näıve recursive implementation of the well-known Fibonacci number series. Given

a natural number n, the call fib(n) computes the n-th term in the Fibonacci series.

The input bytecode to the cost analysis can be seen at the top-left part of the figure.

The input variable n is stored, at the bytecode level, in the local variable with index

0. This local variable is compared with the constants 0 and 1 (the base cases of the

Fibonacci series) in lines 1 and 6. If either of the comparisons succeeds, execution

jumps to bytecode instruction 9, where the constant 1 is pushed on the stack and

returned as the result of the method. Otherwise, i.e., when both comparisons fail,

control goes to bytecode instruction 11, where the method is called recursively twice

(lines 14 and 20), with values n− 1 and n− 2, respectively. The obtained values are

added, thus giving the return value of the method. Our cost analysis starts from

3
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guard(if_icmpeq)

17: iload_0 

guard(ifeq)

1: ifeq 9
0: iload_0

Block 0

Block 1

10: ireturn

9: iconst_1

Block 5
6: if_icmpne 11
5: iconst_1  
4: iload_0  
guard(ifne)

Block 2

Block 3

24: ireturn
23: iadd
20: invoke(static,Fib,fib(I)I)
19: isub
18: iconst_2

Block 4

guard(if_icmpne)
11: iload_0
12: iconst_1
13: isub
14: invoke(static,Fib,fib(I)I)

Fig. 2. Control flow graph

such input bytecode and carries out five main analysis steps which are described in

the following subsections.

2.1 Control Flow Graph

First, the bytecode associated to a method is transformed into a Control Flow Graph

(CFG) by using well-established ideas in compilers theory [2,3], already applied in

Java Bytecode analysis [18]. This is instrumental to transform the unstructured

control flow of the bytecode into recursion.

Consider the CFG in Figure 2. Each block contains an identifier (Block i), an

optional guard, and a (possibly empty) sequence of contiguous bytecode instructions

which are guaranteed to be executed sequentially. Block 0 is the initial block. Edges

in the CFG show the different execution paths. Branching originated by exceptions,

conditional jumps or dynamic dispatching is controlled by means of guards of the

form guard(C), which indicate conditions under which blocks are executed. For

example, Block 1 and Block 2 contain guard(ifeq) and guard(ifne), respectively: if

the element which is on the top of the stack when executing bytecode instruction 1

(ifeq 9) is equal to 0, then execution moves to Block 1, whereas execution moves to

Block 2 if such top element is different from 0. We point out that guards are not

taken into account when computing the cost of a program, since they are not part

of the original program; yet, they provide information which is very relevant for the

generation of accurate recurrence cost equations.

2.2 Recursive Representation

From the CFG we obtain a recursive representation of the method, where iteration

is transformed into recursion. In this representation, each block in the graph is

represented as a rule. In addition, the operand stack is flattened by converting its

content into a series of additional local variables. Note that this is possible since, in

every valid bytecode program, the height of the local stack at each program point

can be computed statically.

(A simplified version of) the recursive representation for the fib method is shown

at the top-right corner of Fig. 1. As fib is indeed a recursive method, the relevance

of this representation is not evident in this case (yet, see, e.g., the example in [5]).
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The notation fibi(x) ← Bi means that the execution of the block Block i on the

input variables x consists of the actions contained in Bi. Guards and block calls

are explicitly represented but, for simplicity, the rest of the bytecode is written

as BC(Blocki). The “;” operator stands for determinate disjunction, meaning that

exactly one of the terms (corresponding to exclusive paths on the CFG) will succeed

for each combination of values of the local variables. The main rule is the one for

fiba; the superscript is only used to distinguish among different calls to the main

rule occurring in the body of a same rule, as in the case of rule for fib4, which

contains calls to fibb and fibc.

In the example, apart from the parameter n, two more variables need to be

taken into account: the elements s0 and s1 on the stack (whose maximum height

is 2). The rule fib2(n, s0) models the behavior of Block 2, which is traversed if

the top of the stack is not 0 (as stated by guard(ifne(s0))) and, after executing

BC(Block2), can be followed by either Block 3 or Block 4 (this is made visible by

the term (fib3(n
′, s′0, s

′
1) ; fib4(n

′, s′0, s
′
1))), depending on the comparison in the

guards at the beginning of the two blocks.

2.3 Size Analysis

The following step consists of inferring size relations between the states at different

program points. Concretely, we infer size relations between the input variables

occurring at the head of a rule and the those occurring in block or method calls

in its body. This is done by performing a bottom-up fixpoint computation. In

general, various measures can be used to determine the size of an input term,

possibly affecting the precision of the result. Among the most used size measures,

our system is able to handle (i) integer value for numeric variables (i.e., the size of

x is its value); and (ii) path length [19] for pointers (i.e., the size of x is the length of

the longest pointer chain starting from x). As we will see later, the size of a variable

is a piece of information which is essential in estimating the cost of programs [13].

In the running example, integer value is used as the size measure, and the in-

ferred size relations are shown in the central part of Figure 1. As an example, the

third size relation is derived from the second rule of the recursive representation:

the relations {s0 = 0, n = n′} mean that s0 is 0 when entering Block 1, as required

by the guard, and n is not modified inside the block.

As for path length analysis, our analyzer does not support the analysis of arbi-

trary programs yet; in particular, the program is supposed to satisfy some correct-

ness conditions [19]: (1) data structures are not cyclic; and (2) whenever a reference

is passed to a method, it is guaranteed that the corresponding structure (on the

heap) is not updated by that method. In order to overcome these limitations, we

should enrich our analyzer by Sharing and Cyclicity components [19]. This is the

subject of ongoing work.

2.4 Relevant Variables

The information obtained by means of the previous analysis steps will be used in

order to estimate the cost of programs. The problem of solving the cost equations

is, in general, very difficult, and the existing tools we used for experimenting our
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approach denote several limitations as regards the class of problems which can be

dealt with. Therefore, our purpose is trying to make things simpler by applying

additional transformations to the results obtained so far.

As a first step, we note that, in many cases, the stack is only used to load a piece

of data contained in a non-stack variable and perform a comparison; afterwards, the

stack location is emptied without any modifications to the loaded data. In this case,

the stack variable is only used as a temporary data-keeper, and its use ends just

after the comparison; detecting such situations is often possible, and leads to unify

the non-stack variable with the stack variable in order to eliminate the latter from

the relations [5]. At line 1 of the example, a comparison to 0 is executed just after

loading n on the stack. It is clear, therefore, that the variable s0 in the recursive

representation can be replaced by n in the guard, thus leading to guard(ifeq(n)).

In fib, this optimization allows to get rid of s0 and s1 in all relations; n comes to

be the only variable which needs to be taken into account.

Moreover, it is important to identify the set of variables which are relevant to

the cost, i.e., whose value may influence the execution time of the program. As an

example, the index of a for -like loop is usually relevant since it affects the number

of iterations; on the other hand, a variable which is used to store partial results has

no effects in the cost, unless its value takes part in computations whose execution

time is not fixed. Relevant variables turn out to be those which are involved in

guards or method calls, since (i) a guard affects the control flow of a program and,

therefore, its execution time; and (ii) the cost of executing external methods can

be clearly relevant to the overall cost. This analysis is similar, in its purpose, to

program slicing [20]; it is performed by propagating backwards through the control

flow graph variables which are found to be relevant. In the end, when a fixpoint is

reached, every block is labeled with the sets of input and output relevant variables

which will be used to produce cost relations. The use of slicing in fib does not lead

to the elimination of any variables from the relations, since, after the optimization

described above, there is only one variable, n, which is clearly relevant to the cost.

However, in the other examples (see Section 3.1), several variables can be eliminated,

thus leading to a simpler form for cost relations which could not be solved otherwise.

2.5 Cost Relations

From the recursive representation, the size relations and the relevant variables,

we automatically yield as output the Cost relation which defines the cost of the

procedure by means of a set of cost equations. Intuitively, for each rule p(x̄) ←

G, B, (q1; . . . ; qn) associated to the block id, where G is the guard and B the bytecode

instructions, we generate:

• one cost equation which defines the cost of p as the cost of the statements in B,

plus the cost of its continuation, denoted p cont;

• another cost equation which defines the cost of p cont as either the cost of q1 (if

its guard is satisfied), . . . , or the cost of qn (if its guard is satisfied).

Therefore, each rule in the recursive representation is associated at least to one

cost equation (when there is no disjunction). For instance, the rule defining fiba

is used to generate Cfib. Since fib contains a disjunction in its body, then a

6
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continuation is generated. This continuation CC0 has as many alternatives as calls

in the disjunction, i.e., two. Each of them is labeled by the corresponding guard,

which determines its applicability. Thus, equation C1 (resp. C2) only may be

applicable if n is equal to 0 (resp. different from 0). Note that the guards in the

equations are extracted from the guards in the rules in the recursive representation.

Size relations are also taken into account in each one of the cost equations not

corresponding to continuations. For instance, equation C4, associated to the rule

fib4, makes use of the last two size relations in Figure 1, which relate fib4 with fibb

and fibc respectively. The application of such size relations allows the generation

of the corresponding calls Cfib(n− 1) and Cfib(n− 2), respectively. Note that the

cost relations are parametric w.r.t. the cost model (in the figure, we use Tb to denote

the cost of the bytecode block b).

3 Cost Analysis for Recursive procedures

In this section, we infer the cost of two classical recursive procedures. In both cases,

and in general for recursive procedures whose base case depends on constant values,

the cost relations obtained by our analysis are directly solvable by Mathematica. For

simplicity, in the following the cost of all bytecode instructions is assumed to be 1;

using a more refined cost model which assigns different costs to different bytecodes

would not introduce further complications. For readability, we present only the

original Java code, instead of the bytecode.

3.1 The Classical Hanoi Towers

The first example corresponds to the classical algorithm of the Hanoi Towers, which

is depicted in the table below; the call hanoi(7, 1, 2, 3) moves 7 disks from tower 1

to tower 3 using the auxiliary tower 2. The recurrence equations obtained by the

analyzer are depicted in the same table. The equation hanoi[n] corresponds to the

total cost of a call to hanoi, where n is the first argument of the method. The

other equations correspond to the cost of the different blocks in the control flow

graph; they are obtained directly from the corresponding recursive representation.

For example, the equation m0[n] corresponds to verifying the condition n>0; here,

2 is the cost of the corresponding bytecodes used in the comparison. The equation

m3[0] corresponds to the base-case (when n≤0), and m3[n] corresponds to executing

the then branch; the constant 15 is the cost of the corresponding bytecodes, and

the two occurrences of hanoi[n−1] are the cost of the recursive calls. The fact that

n decreases by 1 in the recursive calls was detected by size analysis of the bytecode

program. Note that the local variables, and stack elements, which do not appear

in the equations were removed by the slicing algorithm (Section 2.4), since they do

not affect the base-case condition; therefore, they are not relevant for the cost.

Once the equations have been generated, we solve them in Mathematica by calling

its recurrence equation solver RSolve. The query RSolve[{eqns}, {a[n], . . . , z[y]}, {n,

. . . , y}] solves a set of recurrence equations {eqns} for a[n], . . . , z[y], where n, . . . , y

are the only variables, by giving solutions for a, . . . , z as pure functions. The full

Mathematica query is shown in the table. We are able to solve the above equa-

tions without any preprocessing, and, as expected, the obtained answer predicts an

7
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Cost relations and Mathematica solution for Hanoi

static void hanoi(int n,int s,int a,int t) {
if (n > 0) {
hanoi(n-1, s, t, a);

System.out.println(n+”:”+s+”→”+t);

hanoi(n-1, a, t, s); } }

Ehanoi =

8

>

>

>

>

>

<

>

>

>

>

>

:

hanoi[n] == m0[n],

m0[n] == 2 + m3[n],

m3[0] == 1,

m3[n] == m4[n],

m4[n] == 15 + hanoi[n-1]+ hanoi[n-1]

Mathematica query: RSolve[{Ehanoi}, {hanoi[n],m0[n],m3[n],m4[n]},n]

Mathematica answer (complexity): hanoi[n] → (-17) + 5 22+n

Fig. 3. The Hanoi Problem

Cost relations and Mathematica solution for Fibonacci

static int fib(int n){
if ((n==0) || (n==1)) return 1;

else return (fib(n-1)+fib(n-2));

}

Efib =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

fib[n] == m0[n],

m0[n] == 2 + m4[n],

m4[0] == 2,

m4[n] == m5[n],

m5[n] == 3 + m6[n],

m6[1] == 2,

m6[n] == m7[n],

m7[n] == 10 + fib[n-1] + fib[n-2]

Mathematica query: RSolve[{Efib}, {fib[n],m0[n],m4[n],m6[n],m7[n]},n]

Mathematica answer (complexity): fib[n] →-(23−n (15 21+n - 19 ( 1 -
√

5)n + 5√
5 (1 -

√
5)n - 19 (1 +

√
5)n - 5

√
5 (1 +

√
5)n)) / ((-1 +

√
5)2 (1 +

√
5)2)

Fig. 4. The Fibonacci Problem

exponential complexity for hanoi[n].

3.2 Recursive Fibonacci

The next example (Fig. 4) is a recursive implementation of the Fibonacci number

series, already studied in Sec. 2. The recurrence equations obtained by the analyzer

are depicted in the same table. The equation fib[n] corresponds to the total cost of

a call fib(n). The other equations correspond to the different blocks in the control

flow graph. For example, m4[0] and m4[n] correspond to the success and failure

of the condition n == 0, respectively. Similarly, m6[1] and m6[n] corresponds to

n == 1. The equation m7[n] corresponds to the cost of the recursive calls and their

corresponding bytecodes; the decreasing by 1 and 2 in the calls was detected by size

analysis on the bytecode. Moreover, irrelevant stack elements were removed from

the equations by means of slicing. Solving the above equations in Mathematica gives

the expected exponential complexity.

4 Analyzing Programs with Arrays and (Nested) Loops

In this section, we assess the practicality of the cost analysis for several procedures

dealing with arrays and loops. We start by an example for array reversal, whose cost

relations are solvable in Mathematica. Then, we study array concatenation, which

requires some transformations over the cost relation in order to make it solvable.

Finally, we analyze a method for matrix multiplication with several nested loops,

which can be solved by means of a different query for each loop.

8
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Cost relations and Mathematica solution for Array Reversal

static int[ ] reverse(int[ ] a){
int la = a.length;

int[ ] r = new int[la];

for (int i=la ; i > 0 ; i--) r[la-i]=a[i-1];

return r;

}

reverse[a] == m0[a],

m0[a] == 8 + m1[a],

m1[i] == 2 + m2[i],

m2[0] == 2,

m2[i] == m4[i],

m4[i] == 12 + m1[i-1]

Mathematica Query: RSolve[{ rev[a] == m0[a], m0[a] == 8 + m1[a-1],

m1[a] == 2 + m2[a], m2[0] == 2, m2[a] == m4[a], m4[a] == 12 + m1[a-1]},
{rev[a],m0[a],m1[a],m2[a],m4[a]}]

Mathematica Answer: reverse[a] − > 12 (1 + 2 a)

Fig. 5. Array Reversal

4.1 Reverse of an Array

We want to infer the cost of a simple reverse method which reverses the elements

of an array. The recursive representation of reverse in our system takes the form

reverse(a, i, r), where a represents the input array, i is the local variable and r is

the resulting array. Basically, the execution time depends on the number of loop

iterations; therefore, relevant variables are those appearing in the guard of the

recurrence relation for m2 (which denotes the termination condition of the loop).

Only a and i appear in the cost relation yielded by our system, while r is removed.

The size analysis abstracts the array a to its length and infers that the variable i

decreases by one unit in each iteration.

In order to solve the recurrence equations in Mathematica, we need to use the

same variable name in all equations, i.e., we cannot have both a and i. This is

because, otherwise, Mathematica requires all variables to be passed from the initial

equation on (see also Sec. 4.2). Note that this renaming can be easily done in an

automatic way (the result can be seen in the RSolve query).

4.2 Concatenation of Two Arrays

Consider the method concat in Fig. 6: it concatenates two input arrays a and

b and returns the result in c. The equation concat[a, b] corresponds to the cost

of calling concat with two arrays with length a and b, and m0[a, b] corresponds

to the initialization of the local variables. The loops correspond respectively to

the equations: (1) m1[a, b, i], m2[a, b, i] and m4[a, b, i]; and (2) m3[a, b, i] m5[a, b, i],

m7[a, b, i] and m8[a, b, i].

The size analysis was able to infer the increase in the loops’ counters and their

corresponding initial values; slicing removed the variable r, which is irrelevant to

the cost. The major limitations we found in Mathematica are:

1) it is impossible to include guards in the recurrence equations;

2) variables cannot be repeated in the equation head;

3) all equations must have at least one variable argument;

4) variables in the equation head must appear in the body.

Regarding limitation 1), we can notice in the equations for m2 that recursion

ends when i = a. Therefore, we could write the two equations for m2 as fol-

9
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Cost relations and Mathematica solution for Array Concatenation

static int[ ] concat(int a[ ], int b[ ]) {
int l1 = a.length;

int l2 = b.length;

int[ ] r = new int[l1+l2];

int i = 0;

for (i=0;i<l1;i++) r[i]=a[i];

for (i=l1;i<l1+l2;i++) r[i]=b[i];

return r;

}

concat[a,b] == m0[a,b],

m0[a,b] == 15 + m1[a,b,0],

m1[a,b,i] == 3 + m2[a,b,i],

m2[a,b,i] == m3[a,b,i], i ≥ a

m2[a,b,i] == m4[a,b,i], i < a

m3[a,b,i] == 2 + m5[a,b,b],

m4[a,b,i] == 8 + m1[a,b,i+1],

m5[a,b,i] == 5 + m7[a,b,i],

m7[a,b,i] == 2, i ≥ a+b

m7[a,b,i] == m8[a,b,i], i < a+b

m8[a,b,i] == 8 + m5[a,b,i+1],

Mathematica queries:

8

>

>

>

<

>

>

>

:

RSolve[{ m1[i] == 3 + m2[i], m2[a] == 2 + k, m2[i] == m4[i],

m4[i] == 8 + m1[i+1] }, {m1[i],m2[i],m4[i]},i]
RSolve[{ m5[i] == 5 + m7[i], m7[a+b] == 2, m7[i] == m8[i],

m8[i] == 8 + m5[i+1]}, {m5[i],m7[i],m8[i]},i]
Mathematica answers: m1[i] -> 5 + 11 a - 11 i + k (k ->m5[b]) m5[i] -> 7 + 13 a + 13 b - 13 i

Solution (composition of the answers):

concat[a,b] -> 15 + m1[0] ≡ 15 + 5 + 11 a + m5[b] ≡ 27 + 24 a

Fig. 6. Array Concatenation

lows: m2[a, b, a] == m3[a, b, a],m2[a, b, i] == m3[a, b, i]. The same process can be

applied to the equations for m7, which can be transformed to m7[a, b, a + b] ==

2,m7[a, b, i] == m8[a, b, i]. This reformulation is still not acceptable by Mathemat-

ica, because there are repeated variables in the head of the rules (point 2). Yet, we

observe that the first two arguments of the relation, a and b (i.e., the array lengths),

remain constant through the relation. Therefore, we can safely (and automatically)

remove them from all the equations. However, this transformation incurs problems

3) and 4). Problem 3 appears because the first two equations do not have variables

anymore; this prevents us from including them in the Mathematica query (rather,

we can use them only at the end, to compose the final solution). Furthermore,

when i is initialized to the length of the array b in the equation m3, i.e., we have

m3[i] == m5[b], problem 4) occurs. In order to overcome problem 4) (which will

indeed appear frequently), we treat m5[b] as a constant (k is used in the table)

and replace it in all the equations. This involves the execution of two different

queries in Mathematica, as it can be seen above: one for m1[i], and one for m5[i].

The final complexity is obtained by composing the results (taking into account that

k = m5[b]) with the initial equations, which have no variables.

We want to point out that, although the above transformations could be done

automatically (and we could produce recurrence relations which are directly solvable

in Mathematica), we have not implemented them in our system because we are still

studying which solver is more appropriate for our needs. Indeed, Mathematica

is a rather complex software which offers much more than is needed in order to

solve recurrence equations; therefore, we might want to process the output of our

system with a simpler software, like PURRS [7], which is indeed dedicated to solve

recurrence equations.

10
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Cost relations and Mathematica solution for Matrix Multiplication

static int[ ][ ] mult(int[ ][ ] a,int[ ][ ] b,

int r, int c) {
int[ ][ ] c1 = new int[r][c];

for(int i=0; i < r;i++)

for( int j =0; j < c; j++)

for (int k=0; k < c; k++)

c1[i][j] = c1[i][j] + (a[i][k] *a[k][j]);

return c1;

}

mult[r,c] == 16 + m0[r,c,0],

m0[r,c,i] == 3 + m1[r,c,i],

m1[r,c,i] == 0 i ≥ r

m1[r,c,i] == m2[r,c,i] i < r

m2[r,c,i] == 4 + m3[r,c,0] + m0[r,c,i+1]

m3[r,c,j] == 3 + m4[r,c,j],

m4[r,c,j] == 0, j ≥ c

m4[r,c,j] == m5[r,c,j], j < c

m5[r,c,j] == 4 + m6[r,c,0] + m3[r,c,j+1]

m6[r,c,k] == 3 + m7[r,c,k],

m7[r,c,k] == 0, k ≥ c

m7[r,c,k] == m8[r,c,k], k < c

m8[r,c,k] == 24 + m6[r,c,k+1]

Mathematica queries:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

RSolve[{m0[i] == 3 + m1[i], m1[r] == 0, m1[i] == m2[i],

m2[i] == 4 + k + m0[i+1]}, {m0[i],m1[i],m2[i]},i]
RSolve[{m3[j] == 3 + m4[j], m4[c] == 0, m4[j] == m5[j],

m5[j] == 4 + z + m3[j+1]},{m3[j],m4[j],m5[j]},j]
RSolve[{m6[k] == 3 + m7[k], m7[c] == 0, m7[k] == m8[k],

m8[k] == 24 + m6[k+1]}{m6[k],m7[k],m8[k]},k]

Mathematica answers:

8

>

<

>

:

m1[i] -> 3 - 7 i - i k + 7 r + k r (k = m3[0])

m3[j] -> 3 + 7 c - 7 j + c z - j z (z = m6[0])

m6[k] -> 3 (1 + 9 c - 9 k)

Solution: mul-> 16+m1[0]≡19+7r+rm3[0] ≡19+7r+r(3+7c+cm6[0]) ≡ 19+10r+10rc+27c2r

Fig. 7. Matrix multiplication

4.3 Matrix Multiplication

Consider the method mult in Fig. 7, which implements the multiplication of (a

subset of) two matrices. The first two arguments are the matrices to be multiplied,

and r and c are the number of rows and columns to be taken into account. As a

novel feature, mult presents nested loops. This requires a special processing of the

CFG (see [4] for more details), which detects and extracts loops.

The equations m0[r, c, i], m1[r, c, i] and m2[r, c, i] correspond to the outermost

loop; m3[r, c, j], m4[r, c, j] and m5[r, c, j] corresponds to the middle loop; and

m6[r, c, k], m7[r, c, k] and m8[r, c, k] correspond to the innermost loop. Note that

size analysis was able to infer the increase of the loops’ counters, and that slicing

was able to remove variables which are irrelevant to the cost.

The inferred recurrence equations are not solvable by Mathematica. We basically

need to apply the same transformations explained in Sect. 4.2 to make the equations

solvable (and overcome the previously mentioned limitations). Very briefly, we first

simplify all guards by applying them to the equation heads. Then, we remove

parameters f and c from the equations, since they are constant in all of them.

Finally, we input three separate queries to Mathematica, one for each loop. In the

end, the results obtained for the three loops are composed in the initial equation

(we could not include it in the query as it has no arguments).

11
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5 Dealing with Object-Oriented Features

In this section, we study several object-oriented features. First, we see how we deal

with dynamic dispatching in the context of cost analysis. Then, we analyze the cost

of reversing a list implemented as a class with field attributes. Finally, we infer the

cost of a linear search algorithm over the list. To the best of our knowledge, these

examples illustrate novel object-oriented features which are not studied in existing

cost analyses for other languages and paradigms.

5.1 Dynamic dispatching

The Incr example in Fig. 8, taken from [5], presents interesting object-oriented

features, such as the use of objects and the invocation of methods with dynamic

dispatching. In particular, as it is not known at compile time which of the three

methods (A.inc, B.inc or C.inc) will be executed, we need to consider the different

costs obtained for each case. Therefore, the object o which determines which method

will be executed becomes part of the guards in the cost relation. It can be seen in the

equation for m4 that, depending on whether the object o belongs to class A, B, or C,

we have a different cost. We can apply all the transformations discussed in Sect. 4

in order to make the equations solvable in Mathematica (i.e., apply the guards for i,

eliminate variable n from all equations, etc). However, we cannot apply the guards

which distinguish the type of the object to the equation head. Our proposal consists

of generating three different sets of recurrence equations (one corresponding to each

method invocation). We can now get rid of variable o in all sets of equations. This

leads to the three Mathematica queries written in the table. We named the result

for each one as addX, where X is the type of object for which the cost was computed.

As the Mathematica answer is rather large for addB and addC, we did not written

the constant parts in the table. Then, depending on whether one is interested in

upper or lower bounds of the computational cost, we compute the maximum or the

minimum of the three solutions: clearly, addA provides an upper bound and addC a

lower bound of the computational cost.

5.2 List Processing Algorithms

The class List (Fig. 9) contains a procedure which computes the reverse of a list

implemented as a class with two fields: next, which points to the next element in

the list, and data, which contains the information stored in the list. The equations

inferred by the analyzer are depicted in the table. Recall that, in the recurrence

equations, x stands for the length of paths reachable from x, as explained in Sec-

tion 2.3. The size analysis was able to infer that the path length of x is decreasing by

one in every two consecutive visits of the loop, and that slicing was able to remove

all variables that do not affect the loop condition. The output recurrence equations

can be directly solved in Mathematica. We obtained linear complexity as it is shown

in the table.

Finally, the last example Search (Fig. 10) implements the linear search of an

element e in an input list x. It uses the List class, and returns the element of x

whose data field is equal to e. The novel feature of this example is that we have two

12
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Cost relations and Mathematica solution for Dynamic Dispatching

class A {
int incr(int i) {return i+1; }};

class B extends A {
int incr(int i) {return i+2; }};

class C extends B {
int incr(int i) {return i+3; }};

class Incr {
int add(int n, A o) {
int res=0;

int i=0;

while (i <=n) {
res = res + i;

i = o.incr(i);}
return res; }};

add[n,o] == m0[n,o],

m0[n,o] == 4 + m1[n,o,0],

m1[n,o,i] == 3 + m2[n,o,i],

m2[n,o,i] == 2, i > n

m2[n,o,i] == m3[n,o,i], i ≤ n

m3[n,o,i] == 7 + m4[n,o,i],

m4[n,o,i] == A:incr[i] + m5[n,o,i+1], o ∈ A

m4[n,o,i] == B:incr[i] + m5[n,o,i+2], o ∈ B

m4[n,o,i] == C:incr[i] + m5[n,o,i+3], o ∈ C

m5[n,o,i] == 2 + m1[n,o,i],

A:incr[i] == 3,

B:incr[i] == 3,

C:incr[i] == 3,

Mathematica query:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

RSolve[{m1[i] == 3 + m2[i], m2[n] == 2, m2[i] == m3[i], m3[i] == 7 + m4[i],

m4[i] == A + m5[i+1], m5[i] == 2 + m1[i], A[i] == 3 },
{m1[i],m2[i],m3[i],m4[i],m5[i],A[i]},i]

RSolve[{m1[i] == 3 + m2[i], m2[n] == 2, m2[i] == m3[i], m3[i] == 7 + m4[i],

m4[i] == B[i] + m5[i+2], m5[i] == 2 + m1[i], B[i] == 3},
{m1[i],m2[i],m3[i],m4[i],m5[i],B[i]},i]

RSolve[{ m1[i] == 3 + m2[i], m2[n] == 2, m2[i] == m3[i], m3[i] == 7 + m4[i],

m4[i] == C[i] + m5[i+3], m5[i] == 2 + m1[i], C[i] == 3},
{m1[i],m2[i],m3[i],m4[i],m5[i],C[i]},i]

Appr. of Mathematica answers: addA ≈ 15n + K addB ≈ 7.5n + K addC ≈ 5n + K

Fig. 8. The Incr program

Cost relations and Mathematica solution for List Reversal

class List {
List next; int data;

public List reverse(List x) {
List result = null; List tmp = null;

while ( x != null ) {
tmp = x.next; x.next = result;

result = x; x = tmp;

}
return result; }}

reverse[x] == m0[x],

m0[x] == 4 + m1[x],

m1[x] == 2 + m2[x],

m2[0] == 2,

m2[x] == m4[x],

m4[x] == 11 + m1[x-1],

Mathematica query:

8

>

<

>

:

RSolve[{rev[x] == m0[x], m0[x] == 4 + m1[x], m1[x] == 2 + m2[x],

m2[0] == 2, m2[x] == m4[x], m4[x] == 11 + m1[x-1]},
{rev[x],m0[x],m1[x],m2[x],m4[x]},x]

Mathematica answer (complexity): rev[x] -> 8 + 19 x

Fig. 9. List reversal

conditions on the loop, and the second one depends on the content of the list. From

the recurrence equations, we observe that the equations m8 correspond to the first

guard in the loop condition. In particular, the first one is the exit condition of the

loop when the list is null, i.e., x = 0. The second one, x 6= 0, leads to the equations

n1, where the second condition is evaluated. Variable d in this guard represents

x.data. Exiting form the loop depends on whether d is equal to e. Mathematica

cannot handle these recurrence equations, due to the fact that they involve two

guards (and one should consider the best and the worst case). Besides, it is not
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Cost relations and Mathematica solution for List Manipulation

class Search {
public List search(List x, int e) {
int index=1;

while ( x != null && x.data != e ) {
index++;

x = x.next;

}
return x;

}

search[x,e] == m5[x,e],

m5[x,e] == 7 + m6[x,e] + m7[c], c ≤ x

m6[x,e] == 2 + m8[x,e],

m8[0,e] == 0,

m8[x,e] == m9[x,e],

m9[x,e] == 4 + n1[x,e,d],

n1[x,e,d] == 0, d = e

n1[x,e,d] == n0[x,e,d], d 6= e

n0[x,e,d] == 5 + m6[x-1,e],

m7[c] == 2

Mathematica query:

RSolve[{ search[x] == m5[x], m5[x] == 9 + m6[x], m6[x] == 2 + m8[x], m8[0] == 0,

m8[x] == m9[x], m9[x] == 4 + n1[x], n1[x] == n0[x], n0[x] == 5 + m6[x-1]},
{search[x],m5[x],m6[x],m8[x],m9[x],n0[x],n1[x]},{x}]

Mathematica answer (upper bound complexity): search[x] -> 11 (1+x)

Fig. 10. List Manipulation

Benchmark BC CFG RR Size An. Slicing Cost Total

Hanoi 289 15 5 150 15 3 187

Fibonacci 298 19 6 265 39 2 331

Reverse 296 21 5 207 21 2 256

Concat 351 64 7 648 43 4 766

MatMult 388 182 12 2152 115 5 2465

Incr 320 38 13 956 371 7 1383

List 355 27 4 123 58 3 216

Search 351 51 12 462 220 4 750

Diff 377 167 14 3804 595 10 4590

Intersec 390 181 18 4575 869 15 5657

Sum 295 62 8 1415 287 5 1776

Table 1
Measured time (in ms) of the different phases of cost analysis

possible to express the second guard in a way which is understandable to the solver.

The approach we propose consists of approximating the solution by disregarding the

second guard of the loop. This implies that we delete the first equation for n1 from

the set of equations, and the remaining guard d 6= e. As a consequence, variables

e and d become now irrelevant and are sliced away. Note that we will obtain an

upper bound solution for the computational cost, rather than the exact solution.

This reasoning is not easy to automate, and our system still cannot deal with it

automatically. Besides, it should be noted that, in order to solve the equations in

Mathematica, we need to unfold m7 in order to eliminate the guard of m5. After all

these (non trivial) simplifications, Mathematica provides a linear complexity as the

upper bound.

6 Experiments and Discussion

In order to assess the practicality of our cost analysis framework, we have imple-

mented a prototype analyzer in Ciao [9]. The experiments have been performed on

an Intel P4 Xeon 2 GHz with 4 GB of RAM, running GNU Linux FC-2, 2.6.9.
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Table 1 shows the run-times of the different phases of the cost analysis process.

The first column, Benchmark, indicates the name of the class and method of the

benchmark to be analyzed. The second column, BC, contains the size in bytes of

the corresponding .class. All other columns show execution times in milliseconds

and have been obtained using the statistics/2 procedure of Ciao with the param-

eter runtime. They are computed as the arithmetic mean of five runs. For each

benchmark, CFG represents the time taken to build the control flow graph of the

corresponding method; RR is the time taken for obtaining the recursive represen-

tation from the CFG (this includes translating bytecode operations for converting

stack positions into local variables and performing the transformation outlined in

Sec. 2.4); Size An. is the time taken by the abstract-interpretation based size

analysis for computing size relations; Slicing shows the time required for detecting

the set of variables which are relevant in each block of the CFG; finally, Cost stands

for the time taken to build the cost relations for the different blocks.

The benchmarks are divided into four categories, as it can be seen from the

structure of the table: (i) recursive procedures (Sec. 3) solving Hanoi and Fibonacci

problems; (ii) methods involving (possibly nested) loops, as array reverse and con-

catenation, and matrix multiplication (Sec. 4); (iii) procedures manipulating ob-

jects and fields (Sec. 5), as the add method involving dynamic dispatching, and list

reversal and search; (iv) further examples: computing the difference (diff) and the

intersection (intersec) of two arrays, and the function sum computing Σn
i=1 Σi

j=1 i+j.

As the figure shows, the total times obtained using our prototype implementation

range from 187 ms in the case of Hanoi, to 5657 ms in the case of Intersec. As it can

be seen, computing size relations is the most expensive step. This comes from the

fact that this step requires a global analysis of the program, whereas CFG, RR,

and Cost basically involve a single pass on the code. Slicing also requires a global,

though much simpler, analysis. Thus, the time it requires is the biggest after the

size analysis.

Our experimental results are very preliminary, and there is still plenty of room

for optimization (mainly in the size analysis phase). The main planned optimization

is the use of abstract compilation techniques in order to avoid re-computation of

abstract operations which are related to the bytecodes. This can be done since the

analysis is denotational, so that those bytecodes will always have the same abstract

approximations.

As regards the accuracy of the analysis, our approach was able to obtain accurate

cost relations for all the considered benchmarks. Note that this is an important

observation, since we are confident that, by further transformations on the cost

relations, or by using a more powerful system for solving recurrence equations, we

will be able to obtain closed form solutions for a broader class of programs.
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