
Verification of Java Bytecode using Analysis and
Transformation of Logic Programs

E. Albert1, M. Gómez-Zamalloa1, L. Hubert2, and G. Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

{elvira,mzamalloa,laurent,german}@clip.dia.fi.upm.es

Abstract. State of the art analyzers in the Logic Programming (LP)
paradigm are nowadays mature and sophisticated. They allow inferring
a wide variety of global properties including termination, bounds on re-
source consumption, etc. The aim of this work is to automatically transfer
the power of such analysis tools for LP to the analysis and verification of
Java bytecode (jvml). In order to achieve our goal, we rely on well-known
techniques for meta-programming and program specialization. More pre-
cisely, we propose to partially evaluate a jvml interpreter implemented
in LP together with (an LP representation of) a jvml program and then
analyze the residual program. Interestingly, at least for the examples we
have studied, our approach produces very simple LP representations of
the original jvml programs. This can be seen as a decompilation from
jvml to high-level LP source. By reasoning about such residual programs,
we can automatically prove in the CiaoPP system some non-trivial prop-
erties of jvml programs such as termination, run-time error freeness and
infer bounds on its resource consumption. We are not aware of any other
system which is able to verify such advanced properties of Java bytecode.

1 Introduction

Verifying programs in the (Constraint) Logic Programming paradigm —(C)LP—
offers a good number of advantages, an important one being the maturity and
sophistication of the analysis tools available for it. The work presented in this
paper is motivated by the existence of abstract interpretation-based analyzers [3]
which infer information on programs by interpreting (“running”) them using
abstract values rather than concrete ones, thus, obtaining safe approximations of
programs behavior. These analyzers are parametric w.r.t. the so-called abstract
domain, which provides a finite representation of possibly infinite sets of values.
Different domains capture different properties of the program with different levels
of precision and at different computational costs. This includes error freeness,
data structure shape (like pointer sharing), bounds on data structure sizes, and
other operational variable instantiation properties, as well as procedure-level
properties such as determinacy, termination, non-failure, and bounds on resource
consumption (time or space cost), etc. CiaoPP [9] is the abstract interpretation-
based preprocessor of the Ciao (C)LP system, where analysis results have been
applied to perform high- and low-level optimizations and program verification.

CLASS
EVALUATOR

PARTIAL

 Class n

Class 1

....

Class files

META−PROGRAMMING

asser

ANALYZER

Domains
Abstract

READER

check

VERIFICATIONPROGRAM TRANSFORMATION

Program
Residual Abs

JVML r

JVML
Interpreter

r

Program

(LP)

Fig. 1. Verification of Java Bytecode using Logic Programming Tools

A principal advantage of verifying programs on the (LP) source code level is
that we can infer complex global properties (like the aforementioned ones) for
them. However, in certain applications like within the context of mobile code, one
may only have the object code available. In general, analysis tools for such low-
level languages are unavoidably more complicated than for high-level languages
because they have to cope with complicated and unstructured control flow. Fur-
thermore, as the jvml (Java Virtual Machine Language, i.e., Java bytecode) is
a stack-based language, stacks cells are used to store intermediate values, and
therefore their type can change from one assignment to another, and they can
also be used to store 32 bits of a 64 bit value, which make the inference of stack
information much more difficult. Besides, it is a non trivial task to specify/infer
global properties for the bytecode by using pre- and post-conditions (as it is
usually done in existing tools for high-level languages).

The aim of this work is to provide a practical framework for the verification
of jvml which exploits the expressiveness, automation and genericity of the ad-
vanced analysis tools for LP source. In order to achieve this goal, we will focus on
the techniques of meta-programming, program specialization and static analysis
that together support the use of LP tools to analyze jvml programs. Interpre-
tative approaches which rely on CLP tools have been applied to analyze rather
restricted versions of high-level imperative languages [13] and also assembly code
for PIC [8], an 8-bit microprocessor. However, to the best of our knowledge, this
is the first time the interpretative approach has been successfully applied to a
general purpose, realistic, imperative programming language.

Overview. Fig. 1 presents a general overview of our approach. We depict an
element within a straight box to denote its use as a program and a rounded box
for data. The whole verification process is split in three main parts:

1. Meta-programming. We use LP as a language for representing and manipu-
lating jvml programs. We have implemented an automatic translator, called
class reader, which given a set of .class files {Class 1,. . ., Class n} re-
turns P , an LP representation of them in jvmlr (a representative subset of
jvml presented in Sect. 2). Furthermore, we also describe in Sect. 3 an in-
terpreter in LP, called jvmlr int, which captures the JVM semantics. The
interpreter has been extended in order to compute execution traces, which
will be very useful for reasoning about certain properties.

2. Partial evaluation. The development of partial evaluation techniques [10] has
allowed the so-called “interpretative approach” to compilation which consists
in specializing an interpreter w.r.t. a fixed object code. We have used an
existing partial evaluator for LP in order to specialize the jvmlr int

w.r.t. P . As a result, we obtain IP , an LP residual program which can be
seen as a decompiled and translated version of P into LP (see Sect. 4).

3. Verification of Java bytecode. The final goal is that the jvml program can be
verified by analyzing the residual program IP obtained in Step 2) above by
using state-of-the-art analyzers developed for LP, as we will see in Sect. 5.

The resulting scheme has been implemented and incorporated in the CiaoPP pre-
processor. Our preliminary experiments show that it is possible to infer global
properties of the computation of the residual LP programs. We believe our pro-
posed approach is very promising in order to bring the analysis power of declar-
ative languages to low-level, imperative code such as Java bytecode.

2 The Class Reader (jvml to jvmlr in LP)

As notation, we use Prog to denote LP programs and Class to denote .class

files (i.e., jvml classes). The input of our verification process is a set of .class
files, denoted as C1 . . . Cn ∈ Class, as specified by the Java Virtual Machine
Specification [12]. Then, the class reader takes C1 . . . Cn and returns an LP
file which contains all the information in C1 . . . Cn represented in our jvmlr

language. jvmlr is a representative subset of the jvml language which is able to
handle: classes, interfaces, arrays, objects, constructors, exceptions, method call
to class and instance methods, etc. For simplicity, some other features such as
packages, concurrency and types as float, double, long and string are left out of
the chosen subset. For conciseness, we use jvmlr Prog to make it explicit that
an LP program contains a jvmlr representation. The differences between jvml

and jvmlr are essentially the following:

1. Bytecode factorization. Some instructions in jvml have a similar behavior
and have been factorized in jvmlr in order to have fewer instructions3.
This makes the jvmlr code easier to read (as well as the traces which will
be discussed in Sect. 3) and the jvmlr int easier to program and maintain.

2. References resolution. The original jvml instructions contain indexes onto
the constant-pool table [12], a structure present in the .class file which
stores different kinds of data (constants, field and method names, descriptors,
class names, etc.) and which is used in order to make bytecode programs
as compact as possible. The class reader removes all references to the
constant-pool table in the bytecode instructions by replacing them with the
complete information to facilitate the task of the tools which need to handle
the bytecode later.

3 This allows covering over 200 instructions of jvml in 54 instructions in jvmlr.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

class(
className(packageName(’’),shortClassName(’Rational’)),final(false),public(true),
abstract(false),className(packageName(’java/lang/’),shortClassName(’Object’)),[],
[field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(num)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef)),
field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(den)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef))],
[method(

methodSignature(
methodName(

className(packageName(’’),shortClassName(’Rational’)),shortMethodName(’<init>’)),
[primitiveType(int),primitiveType(int)],none),

bytecodeMethod(3,2,0,methodId(’Rational_class’,1),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(exp)),

[primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),
bytecodeMethod(4,4,0,methodId(’Rational_class’,2),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(expMain)),

[primitiveType(int),primitiveType(int),primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(3,4,0,methodId(’Rational_class’,3),[]),
final(false),static(true),public)]).

Fig. 2. Extract of the Program Fact Describing the Rational Class of Running Example

The Ciao file generated by the class reader contains the bytecode instructions
for all methods in C1 . . . Cn, represented as a set of facts; and also, a single fact
obtained by putting together all the other information available in the .class

files (class name, methods and fields signatures, etc.).

Example 1 (running example). Our running example considers a main Java class
named Rational which represents rational numbers using two attributes: num
and den. The class has a constructor, an instance method exp for computing
the exponential of rational numbers w.r.t. a given exponent (the result is re-
turned on a new rational object), and a static method expMain which given
three integers, creates a new rational object using the first two ones as numer-
ator and denominator, respectively, and invokes its exp method using the third
argument as parameter. Finally, it returns the corresponding rational object.
This example features arithmetic operations, object creation, field access, and
invocation of both class and instance methods. It also shows that our approach
is not restricted to intra-procedural analysis.

In Fig. 2, we show the extract of the program fact corresponding to class Ra-
tional. Line numbers are provided for convenience but they are not part of the

bytecode(0,2,’Rational’,const(primitiveType(int),1),1).
bytecode(1,2,’Rational’,istore(2),1).
bytecode(2,2,’Rational’,const(primitiveType(int),1),1).
bytecode(3,2,’Rational’,istore(3),1).
bytecode(4,2,’Rational’,iload(1),1).
bytecode(5,2,’Rational’,if0(leInt,23),3).
bytecode(8,2,’Rational’,iload(2),1).
bytecode(9,2,’Rational’,aload(0),1).
bytecode(10,2,’Rational’,getfield(fieldSignature(

fieldName(className(packageName(’’),shortClassName(’Rational’)),shortFieldName(num)),
primitiveType(int))),3).

bytecode(13,2,’Rational’,ibinop(mulInt),1).
bytecode(14,2,’Rational’,istore(2),1).
bytecode(15,2,’Rational’,iload(3),1).
bytecode(16,2,’Rational’,aload(0),1).
bytecode(17,2,’Rational’,getfield(fieldSignature(

fieldName(className(packageName(’’),shortClassName(’Rational’)),shortFieldName(den)),
primitiveType(int))),3).

bytecode(20,2,’Rational’,ibinop(mulInt),1).
bytecode(21,2,’Rational’,istore(3),1).
bytecode(22,2,’Rational’,iinc(1,-1),3).
bytecode(25,2,’Rational’,goto(-21),3).
bytecode(28,2,’Rational’,new(className(packageName(’’),shortClassName(’Rational’))),3).
bytecode(31,2,’Rational’,dup,1).
bytecode(32,2,’Rational’,iload(2),1).
bytecode(33,2,’Rational’,iload(3),1).
bytecode(34,2,’Rational’,invokespecial(methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),
shortMethodName(’<init>’)),

[primitiveType(int),primitiveType(int)],none)),3).
bytecode(37,2,’Rational’,areturn,1).

bytecode(0,3,’Rational’,new(className(packageName(’’),shortClassName(’Rational’))),3).
bytecode(3,3,’Rational’,dup,1).
bytecode(4,3,’Rational’,iload(0),1).
bytecode(5,3,’Rational’,iload(1),1).
bytecode(6,3,’Rational’,invokespecial(methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),
shortMethodName(’<init>’)),

[primitiveType(int),primitiveType(int)],none)),3).
bytecode(9,3,’Rational’,iload(2),1).
bytecode(10,3,’Rational’,invokevirtual(methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),
shortMethodName(exp)),

[primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’)))))),3).

bytecode(13,3,’Rational’,areturn,1).

Fig. 3. Extract of the Bytecode facts of our Running Example

code. The description of the field num appears in Lines 4-9, den in L.10-15 and
the methods in L.16-38. For conciseness, only methods actually used are shown.
The first method (L.16-22) is a constructor that takes two integers (L.20) as
arguments. The second method (L.23-30) is named exp (L.26), it is an instance
method (cf. static(false) L.30)) and takes an integer (L.27) as a parameter
and returns an instance of Rational (L.28). Finally, the last method (L.31-38),
expMain, is a class method (cf. static(true) L.38), that takes as parameters
three integers (L.35) and returns an instance of Rational (L.36).

Fig. 3 presents the bytecode facts corresponding to the methods exp and
expMain. Each fact is of the form bytecode(PC,MethodID,Class,Inst,Size),

where Class and MethodID, respectively, identify the class and the method to
which the instruction Inst belongs. PC corresponds to the program counter and
Size to the number of bytes of the instruction in order to be able to compute the
next value of the program counter. The class method number 3 (i.e., expMain)
creates first an instance of Rational (Instructions 0-6) and then invokes the
instance method exp (I.9-10). The bytecode of the method number 2 (i.e., exp),
can be divided in 3 parts. First, the initialization (I.0-3) of two local variables,
say x2 and x3, to 1. Then, the loop body (I.4-25) first compares the exponent
to 0 and, if it is less or equal to 0, exits the loop by jumping 23 bytes ahead
(I.4-5). Then, the current value of x2 (iload) and the denominator (aload and
getfield) are retrieved (I.8-10), multiplied and stored in x2 (I.13-14). The same
is done for x3 with the numerator in I.15-21. Finally, the value of the exponent
is decreased by one (I.22) and PC is decreased by 21 (I.25) i.e., we jump back
to the beginning of the loop. After the loop, the method creates an instance of
Rational, stores the result (I.28-34), and returns this object (I.37).

3 Specification of the Dynamic Semantics

(C)LP programs have been used traditionally for expressing the semantics of
both high- and low-level languages [13, 17]. In our approach, we express the
jvml semantics in Ciao. The formal jvml specification chosen for our work is
Bicolano [14], which is written with the Coq Proof Assistant [1]. This allows
checking that the specification is consistent and also proving properties on the
behavior of some programs.

In the specification, a state is modeled by a 3-tuple4 〈 Heap, Frame, Stack-
Frame 〉 which represents the machine’s state where Heap represents the con-
tents of the heap, Frame represents the execution state of the current Method
and, StackFrame is a list of frames corresponding to the call stack. Each frame
is of the form 〈 Method, PC,OperandStack, LocalV ar 〉 and contains the stack
of operands OperandStack and the values of the local variables LocalV ar at
the program point PC of the method Method. The definition of the dynamic
semantics is based on the notion of step.

Definition 1 (step
L
−→P). The dynamic semantics of each instruction is speci-

fied as a partial function step : jvmlr Prog×StateJV M → StateJV M×Step Na-
me that, given a program P ∈ jvmlr Prog and a state S ∈ StateJV M , computes
the next state S′ ∈ StateJV M and returns the name of the step L ∈ Step Name.

For convenience, we write S
L
−→P S′ to denote step(P, S) = (S′, L).

In order to formally define our interpreter, we need to define the following func-
tion which iterates over the steps of the program until obtaining a final state.

Definition 2 (
T
−→

∗

P). Let
T
−→

∗

P be a relation on StateJV M with S
T
−→

∗

P S′ iff:

4 Both in Bicolano and in our implementation there is another kind of state for ex-
ceptions, but we have omitted it from this formalization for the sake of simplicity.

– there exists a sequence of steps L1 to Ln such that S
L1−−→P . . .

Ln−−→P S′,

– there is no state S′′ ∈ StateJV M such that S′
L
−→P S′′, and

– T ∈ Traces such that T = [L1, . . . , Ln] is the list of the names of the steps.

We can now define a general interpreter which takes as parameters a program
and a method invocation specification (mis in the following) that indicates: 1)
the method the execution should start from, 2) the corresponding effective pa-
rameters of the method which will often contain logical variables or partially
instantiated terms (and should be interpreted as the set of all their instances)
and 3) an initial heap. The interpreter relies on an execute function that takes
as parameters a program P ∈ jvmlr Prog and a state S ∈ StateJV M and returns

(S′, T) where S
T
−→

∗

P S′.
The following definition of jvmlr int computes, in addition to the return

value of the method called, also the trace which captures the computation his-
tory. Traces represent the semantic steps used and therefore do not only represent
instructions, as the context has also some importance. They allow us to distin-
guish, for example, for a same instruction, the step that throws an exception from
the normal behavior. E.g., invokevirtual step ok and invokevirtual step -

NullPointerException represent, respectively, a normal method call and a
method call on a null reference that throws an exception.

Definition 3 (jvmlr int). Let M be a mis that contains a method signature,
the parameters for the method and a heap, written as M ∈ mis. We define a
general interpreter jvmlr int(P,M) = (R, T) with

– S = initialState(P,M), where function initialState builds, from the program
P and the mis M , a state S ∈ StateJV M ,

– execute(P, S) = (S′, T) and
– R = result of (S′) is the result of the execution of the method specified by M

(the value on top of the stack of the current frame of S ′).

This definition of jvmlr int returns the trace and the result of the method but it
is straightforward to modify the definitions of jvmlr int and execute to return
less information or to add more. This gives more flexibility to our interpretative
approach when compared to direct compilation: for example, if needed, we can
return in an additional argument a list containing the information about each
state which we would like to observe in order to prove properties which may
require a deeper inspection of execution states.

4 Automatic Generation of Residual Programs

Partial evaluation (PE) [10] is a semantics-based program optimization technique
which has been deeply investigated within different programming paradigms.
The main purpose of PE is to specialize a given program w.r.t. the static data,
i.e., the part of its input data which is known—hence it is also known as program
specialization. The partially evaluated (or residual) program will be (hopefully)

executed more efficiently since those computations that depend only on the static
data are performed once and for all at PE time. We use the partial evaluator for
LP programs of [15] which is part of CiaoPP. Here, we represent it as a function
partial evaluator: Prog×Data → Prog which, for a given program P ∈ Prog
and static data S ∈ Data, returns a residual program PS ∈ Prog which is a
specialization [10] of P w.r.t. S.

The development of PE, program specialization and related techniques [6, 10,
7] has led to an alternative approach to compilation (known as the first Futamura
projection) based on specializing an interpreter with respect to a fixed object
program. The success of the application of the technique involves eliminating
the overhead of parsing the program, fetching instructions, etc., and leading to a
residual program whose operations mimic those of the object program. This can
also be seen as a translation of the object program into another programming
language, in our case Ciao. The residual program is ready now to be, for instance,
efficiently executed in such language or, as in our case, accurately analyzed by
tools for the language in which it has been translated. The application of this
interpretative approach to compilation within our framework consists in partially
evaluating the jvmlr int w.r.t. P = class reader(C1, . . . , Cn) and a mis.

Definition 4 (LP residual program). Let jvmlr int ∈ Prog be a jvmlr

interpreter, M ∈ mis and C1, . . . , Cn ∈ Class be a set of classes. The LP
residual program, IP , for jvmlr int w.r.t. C1, . . . , Cn and M is defined as
IP =partial evaluator(jvmlr int, (class reader(C1, . . . , Cn),M)).

Note that, instead of using the interpretative approach, we could have imple-
mented a compiler from Java bytecode to LP. However, we believe that the
interpretative approach has at least the following advantages: 1) more flexible,
in the sense that it is easy to modify the interpreter in order to observe new
properties of interest, see Sect. 3, 2) easier to trust, in the sense that it is rather
difficult to prove (or trust) that the compiler preserves the program semantics
and, it is also complicated to explicitly specify what the semantics used is, 3)
easier to maintain, new changes in the JVM semantics can be easily reflected
in the interpreter by modifying (or adding) a proper “step” definition, and 4)
easier to implement, provided a powerful partial evaluator for LP is available.

Example 2 (residual programs). We now want to partially evaluate our imple-
mentation of the interpreter which does not output the trace (see Sect. 3) w.r.t.
the bytecode method expMain in Ex. 1, an empty heap and three free variables as
parameters. The size of the program to be partially evaluated (i.e., interpreter)
is 86,326 bytes (2,240 lines) while the size of the data (i.e., bytecode represen-
tation) is 16,677 bytes (101 lines) of jvmlr. The partial evaluator has different
options for tuning the level of specialization. For this example, we have used local
and global control strategies based on homeomorphic embedding (see [11]).

We show in Fig. 4 the residual program resulting of such automatic PE. The
parameters A, B and C of expMain/5 represent the numerator, denominator and
exponent, respectively. The fourth and fifth parameters represent, respectively,
the top of the stack and the heap where the method result (i.e., an object of

expMain(A,B,C,ref(loc(2)),heap([[num(int(A)),num(int(B))],

[num(int(1)),num(int(1))]])) :- C=<0 .

expMain(A,B,C,ref(loc(2)),heap([[num(int(A)),num(int(B))],

[num(int(A)),num(int(B))]])) :- C>0, F is C-1, F=<0 .

expMain(A,B,C,D,E) :- C>0, H is C-1, H>0, I is A*A,

J is B*B, K is H-1, execute(A,B,K,I,J,E,D) .

execute(A,B,C,D,E,heap([[num(int(A)),num(int(B))],

[num(int(D)),num(int(E))]]),ref(loc(2))) :- C=<0 .

execute(A,B,C,D,E,G,L) :- C>0, N is D*A, O is E*B, P is C-1,

execute(A,B,P,N,O,G,L) .

Fig. 4. Residual Exponential Program without Trace

type Rational in the bytecode) will be returned. In particular, the result corre-
sponds to the second element, ref(loc(2)), in the heap. Note that this object
is represented in our LP program as a list of two atoms, the first one corresponds
to attribute num and the second one to den. The first two rules for expMain/5

are the base cases for exponents C = 0 and C = 1, respectively. The third rule,
for C > 1, uses an auxiliary recursive predicate execute/6 which computes AC+1

and BC+1 and returns the result in the second element of the heap. It should be
noted that our PE tool has done a very good job by transforming a rather large
interpreter into a small residual program (where all the interpretation overhead
has been removed). The most relevant point to notice about the residual pro-
gram is that we have converted low level jumps into a recursive behavior and
achieved a very satisfactory translation from the Java bytecode method expMain.
Indeed, it is not very different from the Ciao version one could have written by
hand, provided that we need to store the result in the fifth argument of predicate
expMain/5 as an object in the heap, using the corresponding syntax.

While the above LP program can be of a lot of interest when reasoning about
functional properties of the code, it is also of great importance to augment the
interpreter with an additional argument which computes a trace (see Def. 3) in
order to capture the computation history. The residual program which computes
execution traces is expMain/4, which on success contains in the fourth argument
the execution trace at the level of Java bytecode (rather than the top of the
stack and the heap). Below, we show the recursive rule of predicate execute/8
whose last argument represents the trace (and corresponds to the second rule of
execute/7 without trace in Fig. 4):

execute(B,C,D,E,F,G,I,[goto_step_ok,iload_step,if0_step_continue,

iload_step,aload_step_ok,getfield_step_ok,ibinop_step_ok,

istore_step_ok,iload_step,aload_step_ok,getfield_step_ok,

ibinop_step_ok,istore_step_ok,iinc_step|H]) :-

D>0, I is E*B, J is F*C, K is D-1, execute(B,C,K,I,J,G,I,H) .

As we will see in the next section, this trace will allow observing a good number
of interesting properties about the program.

5 Verification of Java Bytecode Using LP Analysis Tools

Having obtained an LP representation of a Java bytecode program, the next
task is to use existing analysis tools for LP in order to infer and verify prop-
erties about the original bytecode program. We now recall some basic notions
on abstract interpretation [3]. Abstract interpretation provides a general for-
mal framework for computing safe approximations of program behaviour. In
this framework, programs are interpreted using abstract values instead of con-
crete values. An abstract value is a finite representation of a, possibly infinite,
set of concrete values in the concrete domain D. The set of all possible ab-
stract values constitutes the abstract domain, denoted Dα, which is usually a
complete lattice or cpo which is ascending chain finite. Abstract values and
sets of concrete values are related by an abstraction function α : 2D → Dα,
and a concretization function γ : Dα → 2D. The concrete and abstract do-
mains must be related in such a way that the following condition holds [3]:
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general, the compari-
son in Dα, written v, is induced by ⊆ and α.

We rely on a generic analysis algorithm (in the style of [9]) defined as a
function analyzer: Prog×AAtom×ADom → AApprox which takes a program
P ∈ Prog, an abstract domain Dα ∈ ADom and a set of abstract atoms Sα ∈
AAtom which are descriptions of the entries (or calling modes) into the program
and returns Approxα ∈ AApprox . Correctness of analysis ensures that Approxα

safely approximates the semantics of P . We denote that Sα and Approxα are
abstract semantic values in Dα by using the same subscript α.

In order to verify the program, the user has to provide the intended se-
mantics Assertα (or specification) as a semantic value in Dα in terms of as-
sertions (these are linguistic constructions which allow expressing properties
of programs) [16]. This intended semantics embodies the requirements as an
expression of the user’s expectations. The verifier has to compare the (ac-
tual) inferred semantics Approxα w.r.t. Assertα. We use the abstract inter-
pretation-based verifier integrated in CiaoPP. It is dealt here as a function
ai verifier: Prog × AAtom × ADom × AAssert → boolean which for a given
program P ∈ Prog, a set of abstract atoms Sα ∈ AAtom, an abstract domain
Dα ∈ ADom and an intended semantics Assertα in Dα succeeds if the approx-
imation computed by analyzer(P, Sα, Dα)=Approxα entails that P satisfies
Assertα, i.e., Approxα v Assertα.

Definition 5 (verified bytecode). Let IP ∈ Prog be an LP residual pro-
gram for jvmlr int w.r.t. C1, . . . , Cn ∈ Class and M ∈ mis (see Def. 3).
Let Dα ∈ ADom be an abstract domain, Sα ∈ AAtom be a set of abstract
atoms and Assertα ∈ Dα be the abstract intended semantics of IP . We say
that (C1, . . . , Cn,M) is verified w.r.t. Assertα in ADom if ai verifier(IP ,
Sα, Dα, Assertα) succeeds.

In principle, any of the considerable number of abstract domains developed for
abstract interpretation of logic programs can be applied to residual programs, as

well as to any other program. In addition, arguably, analysis of logic programs
is inherently simpler than that of Java bytecode since the bytecode programs
decompiled into logic programs no longer contain an operand stack for arithmetic
and execution flow is transformed from jumps (since loops in the Java program
are compiled into conditional and unconditional jumps) into recursion.

5.1 Run-Time Error Freeness Analysis

The use of objects in Ex. 1 could in principle issue exceptions of type NullPoin-
terException. Clearly, the execution of the expMain method will not produce
any exception, as the unique object used is created within the method. However,
the JVM is unaware of this and has to perform the corresponding run-time test.
We illustrate that by using our approach we can statically verify that the previous
code cannot issue such an exception (nor any other kind of run-time error).

First, we proceed to specify in Ciao the property “goodtrace” which encodes
the fact that a bytecode program is run-time error free in the sense that its
execution does not issue NullPointerException nor any other kind of run-time
error (e.g., ArrayIndexOutOfBoundsException, etc). As this property is not
predefined in Ciao, we declare it as a regular type using the regtype declarations
in CiaoPP. Formally, we define this property as a regular unary logic program,
see [5]. The following regular type goodtrace defines this notion of safety for
our example (for conciseness, we omit the bytecode instructions which do not
appear in our program):
:- regtype goodtrace/1.
goodtrace(T) :- list(T,goodstep).

:- regtype goodstep/1.
goodstep(iinc_step). goodstep(aload_step_ok). goodstep(invokevirtual_step_ok).
goodstep(iload_step). goodstep(if0_step_jump). goodstep(invokestatic_step_ok).
goodstep(normal_end). goodstep(const_step_ok). goodstep(if0_step_continue).
goodstep(new_step_ok). goodstep(return_step_ok). goodstep(if_icmp_step_jump).
goodstep(pop_step_ok). goodstep(astore_step_ok). goodstep(putfield_step_ok).
goodstep(dup_step_ok). goodstep(istore_step_ok). goodstep(getfield_step_ok).
goodstep(goto_step_ok). goodstep(ibinop_step_ok). goodstep(if_icmp_step_continue).
goodstep(areturn_step_ok). goodstep(invokespecial_step_here_ok).

Next, the version with traces of the residual program in Fig. 4 is extended with
the following assertions:
:- entry expMain(Num,Den,Exp,Trace):(num(Num),num(Den),num(Exp),var(Trace)).

:- check success expMain(Num,Den,Exp,Trace) => goodtrace(Trace).

The entry assertion describes the valid external queries to predicate expMain/4,
where the first three parameters are of type num and the fourth one is a variable.
We use the “success” assertion as a way to provide a partial specification of the
program. It should be interpreted as: for all calls to expMain(Num,Den,Exp,Trace),
if the call succeeds, then Trace must be a goodtrace.

Finally, we use CiaoPP to perform regular type analysis using the eterms
domain [18]. This allows computing safe approximations of the success states of
all predicates. After this, CiaoPP performs compile-time checking of the success
assertion above, comparing it with the assertions inferred by the analysis, and
produces as output the following assertion:
:- checked success expMain(Num,Den,Exp,Trace) => goodtrace(Trace).

Thus, the provided assertion has been validated (marked as checked).

5.2 Cost Analysis and Termination

As mentioned before, abstract interpretation-based program analysis techniques
allow inferring very rich information including also resource-related issues. For
example, CiaoPP can compute upper and lower bounds on the number of exe-
cution steps required by the computation [9, 4]. Such bounds are expressed as
functions on the sizes of the input arguments. Various metrics are used for the
“size” of an input, such as list-length, term-size, term-depth, integer-value, etc.
Types, modes, and size measures are first automatically inferred by the analyzers
and then used in the size and cost analysis.

Let us illustrate the cost analysis in CiaoPP on our running example. We
consider a slightly modified version of the residual program in Fig. 4 in which
we have eliminated the accumulating parameter due to a current limitation of the
cost analysis in CiaoPP. The cost analysis can then infer the following property
of the recursive predicate execute/5 (and a similar one of expMain/4) using the
same entry assertion as in Sect. 5.1:

:- true pred execute(A,B,C,D,E): (num(A),num(B),num(C),var(D),var(E))

=> (num(A), num(B), num(C), num(D), num(E),

size_ub(A,int(A)), size_ub(B,int(B)), size_ub(C,int(C)),

size_ub(D,expMain(int(A),int(C)+1)+int(A)),

size_ub(E,expMain(int(B),int(C)+1)+int(B)))

+ steps_ub(int(C)+1).

which states that execute/5 is called in this program with the first three pa-
rameters being of type num (i.e., bound to numbers) and two variables. The part
of the assertion after the => symbol indicates that on success of the predicate all
five parameters are bound to numbers. This is used by the cost analysis in order
to set the integer-value as size-metric for all five arguments. The first three argu-
ments are input to the procedure and thus their size (value) is fixed. The last two
arguments are output and their size (value) is a function on the value of (some
of) the first three arguments. The upper bound computed by the analysis for D

(i.e., the fourth argument) is AC+1 +A. Note that this is a correct upper bound,
though the most accurate one is indeed AC+1. A similar situation occurs with
the upper bound for the fifth argument (E). Finally, the part of the assertion
after the + symbol indicates that an upper bound on the number of execution
steps is C + 1, which corresponds to a linear algorithmic complexity. This is
indeed the most accurate upper bound possible, since predicate execute/5 is
called C +1 times until C becomes zero. Note that, in this case, we do not mean
the number of JVM steps in Def. 1, but the number of computational steps.

CiaoPP’s termination analysis relies on the cost analysis described in the
previous section. In particular, it is able to prove termination of a program
provided it obtains a non-infinite upper bound of its cost. Following the example
of Sect. 5.2, CiaoPP is able to turn into checked status the following assertion
(and the similar one for expMain/4): “:- check comp execute(A,B,C,D,E) +

terminates”. which ensures that the execution of the recursive predicate always
terminates w.r.t. the previous entry.

6 Experiments and Discussion

We have implemented and performed a preliminary experimental evaluation of
our framework within the CiaoPP preprocessor [9], where we have available a
partial evaluator and a generic analysis engine with a good number of abstract
domains, including the ones illustrated in the previous section. Our interpreta-
tive approach has required the implementation in Ciao of two new packages: the
class reader (1141 lines of code) which parses the .class files into Ciao and
the jvmlr int interpreter for the jvmlr (3216 lines). These tools, together with
a collection of examples, are available at: http://cliplab.org/Systems/jvm-by-pe.

Table 1 studies two crucial points for the practicality of our proposal: the
size of the residual program and the relative efficiency of the full transforma-
tion+analysis process. As mentioned before, the algorithms are parametric w.r.t.
the abstract domain. In our experiments we use eterms, an abstract domain
based on regular types, that is very useful for reasoning about functional prop-
erties of the code, run-time errors, etc., which are crucial aspects for the safety of
the Java bytecode. The system is implemented in Ciao 1.13 [2] with compilation
to WAM bytecode. The experiments have been performed on an Intel P4 Xeon
2 GHz with 4 GB of RAM, running GNU Linux FC-2, 2.6.9.

The input “program” to be partially evaluated is the jvmlr int interpreter
in all the examples. Then, the first group of columns Bytecode shows informa-
tion about the input “data” to the partial evaluator, i.e., about the .class files.
The columns Class and Size show the names of the classes used for the experi-
ments and their sizes in bytes, respectively. The second column Method refers
to the name of the method within each class which is going to form the mis, i.e.,
to be the starting point for PE and context-sensitive program analysis. We use
a set of classical algorithms as benchmarks. The first 9 methods belong to pro-
grams with iterations and static methods but without object-oriented features,
where mod, fact, gcd and lcm, compute respectively the modulo, factorial,
greatest-common-divisor and least-common-multiple (two versions); the Com-
binatory class has different methods for computing the number of selections of
subsets given a set of elements for every ordering/repetition combination. The
next two benchmarks, LinearSearch and BinarySearch, deal with arrays and
correspond to the classic linear and binary search algorithms. Finally, the last
four benchmarks correspond to programs which make extensive use of object-
oriented features such as instance method invocation, field accessing and setting,
object creation and initialization, etc.

The information about the “output” of the PE process appears in the second
group of columns, Residual. The columns Size and NUnfs show the size in
bytes of each residual program and the number of unfolding steps performed
by the partial evaluator to generate it, respectively. We can observe that the
partial evaluator has done a good job in all examples by transforming a rather
large interpreter (86,326 bytes) in relatively small residual programs. The sizes
range from 317 bytes for m2 (99.4% reduction) to 4.911 for Lcm2 (83.6 %). The
number of required unfolding steps explains the high PE times, as we discuss
below. A relevant point to note is that, for most programs, the size of the LP

Bytecode Residual Times (ms)

Class Size Method Size NUnfs Trans PE Ana Total

Mod 314 mod 956 1645 18 1244 59 1322

Fact 324 fact 1007 1537 19 1432 74 1525

Gcd 265 gcd 940 1273 18 1160 125 1303

Lcm 299 lcm 2260 4025 21 5832 817 6670

Lcm2 547 lcm2 4911 3724 26 3963 1185 5174

Combinatory 703 varNoRep 1314 1503 32 1837 87 1955

Combinatory 703 combNoRep 2177 2491 34 3676 150 3860

Combinatory 703 combRep 2151 3033 29 5331 950 6310

Combinatory 703 perm 1022 1256 29 1234 65 1328

LinearSearch 318 search 3114 8832 22 45228 296 45546

BinarySearch 412 search 3670 14117 23 72945 313 73282

Np 387 m2 317 527 20 502 12 534

ExpFact 890 main 2266 8353 35 23773 95 23903

Rational 559 expMain 3131 6613 31 13692 16 13739

Date 602 forward 11046 26982 36 80960 218 81213
Table 1. Sizes of residual programs and transformation and analysis times

translation is larger than the original bytecode. This can be justified by the fact
that the resulting program does not only represent the bytecode program but
it also makes explicit some internal machinery of the JVM. This is the case,
for instance, of the exception handling. As there are no Ciao exceptions in the
residual program, the implicit exceptions in jvml have been made explicit in LP.
Furthermore, the Java bytecode has been designed to be really compact, while
the LP version has been designed to be easier to read by human beings and
contains type information that must be inferred on the jvml. It should not be
difficult to reduce the size of the residual bytecode if so required by, for example,
simply using short identifiers.

The final part of the table provides the times for performing the transfor-
mations and the analysis process. Execution times are given in milliseconds
and measure runtime. They are computed as the arithmetic mean of five runs.
For each benchmark, Trans, PE and Ana are the times for executing the
class reader, the partial evaluator and the analyzer, respectively. The col-
umn Total accumulates all the previous times. We can observe that most of
the time is due to the partial evaluation phase (and this time is directly related
to the number of unfolding steps performed). This is to be expected because
the specialization of a large program (i.e., the interpreter) requires to perform
many unfolding steps in all the examples (ranging from 14.117 steps for search
in BinarySearch to 527 for m2), plus many additional generalization steps
which are not shown in the table. The analysis time is then relatively low, as
the residual programs to be analyzed are significantly smaller than the program
to be partially evaluated.

As for future work, we plan to obtain accurate bounds on resource con-
sumption by considering the traces that the residual program contains and the
concrete cost of each bytecode instruction. Also, we are in the process of studying
the scalability of our approach to the verification of larger Java bytecode pro-

grams. We also plan to exploit the advanced features of the partial evaluator
which integrates abstract interpretation [15] in order to handle recursion.

Acknowledgments This work was funded in part by the Information Society Tech-

nologies program of the European Commission, Future and Emerging Technologies

under the IST-15905 MOBIUS project, by the Spanish Ministry (TIN-2005-09207

MERIT), and the Madrid Regional Government (S-0505/TIC/0407 PROMESAS). The

authors would like to thank David Pichardie and Samir Genaim for useful discussions

on the Bicolano JVM specification and on termination analysis, respectively.

References

1. B. Barras et al. The Coq proof assistant reference manual: Version 6.1. Technical
Report RT-0203, 1997. citeseer.ist.psu.edu/barras97coq.html.

2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and G. Puebla (Eds.).
The Ciao System. (v1.13). At http://clip.dia.fi.upm.es/Software/Ciao/.

3. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

4. S. Debray, P. López, M. Hermenegildo, and N. Lin. Estimating the Computational
Cost of Logic Programs. Proc. of SAS’94, LNCS 864, pp. 255–265. Springer.

5. T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Proc. LICS’91, pages 300–309, 1991.

6. Yoshihiko Futamura. Partial evaluation of computation process - an approach to
a compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

7. J. Gallagher. Transforming logic programs by specializing interpreters. In Proc. of
the 7th. European Conference on Artificial Intelligence, 1986.

8. Kim S. Henriksen and John P. Gallagher. Analysis and specialisation of a pic
processor. In SMC (2), pages 1131–1135. IEEE, 2004.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López. Integrated Program De-
bugging, Verification, and Optimization Using Abstract Interpretation. Science of
Computer Programming, 58(1–2):115–140, October 2005.

10. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

11. M. Leuschel. On the power of homeomorphic embedding for online termination.
Proc. of SAS’98, pages 230–245, 1998. Springer-Verlag.

12. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. A-W, 1996.
13. J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative programs

through analysis of CLP. In Proc. of SAS’98, LNCS 1503, pp. 246–261, 1998.
14. D. Pichardie. Bicolano (Byte Code Language in cOq). http://www-

sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html.
15. G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Special-

ized Definitions. In Proc. of SAS’06, LNCS. Springer, 2006. To appear.
16. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for CLP. In

Analysis and Visualization Tools for CP, pages 23–61. Springer LNCS 1870, 2000.
17. Brian J. Ross. The partial evaluation of imperative programs using prolog. In

META, pages 341–363, 1988.
18. C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic

Programs. In Proc. of SAS’02, pages 102–116. Springer LNCS 2477, 2002.

