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ABSTRACT
Finding useful sharing information between instances in obj-
ect-oriented programs has been recently the focus of much
research. The applications of such static analysis are multi-
ple: by knowing which variables share in memory we can ap-
ply conventional compiler optimizations, find coarse-grained
parallelism opportunities, or, more importantly,erify certain
correctness aspects of programs even in the absence of anno-
tations In this paper we introduce a framework for deriving
precise sharing information based on abstract interpretation
for a Java-like language. Our analysis achieves precision
in various ways. The analysis is multivariant, which allows
separating different contexts. We propose a combined Set
Sharing + Nullity + Classes domain which captures which
instances share and which ones do not or are definitively
null, and which uses the classes to refine the static infor-
mation when inheritance is present. Carrying the domains
in a combined way facilitates the interaction among the do-
mains in the presence of mutivariance in the analysis. We
show that both the set sharing part of the domain as well
as the combined domain provide more accurate information
than previous work based on pair sharing domains, at rea-
sonable cost.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—program analysis

General Terms
Languages, Verification, Reliability, Experimentation

Keywords
Pair sharing, set sharing, context sensitivity, class analysis.

1. INTRODUCTION
The technique of Abstract Interpretation [7] has allowed the
development of sophisticated program analyses which are at

the same time provably correct and practical. The semantic
approximations produced by such analyses have been tradi-
tionally applied to high- and low-level optimizations during
program compilation, including program transformations.
More recently, promising applications of such semantic ap-
proximations have been demonstrated in the more general
context of program development, such as verification and
static debugging.

Sharing analysis [12, 19, 24] aims to detect which variables
share in memory, i.e., point (transitively) to the same loca-
tion. It can be viewed as an abstraction of the graph-based
representations of memory used by certain classes of alias
analyses (see, e.g., [30, 4, 11, 13]). Obtaining a safe approx-
imation of which instances might share allows parallelizing
segments of code, improving garbage collection, reordering
execution, etc. Also, sharing information can improve the
precision of other analyses.

Nullity analysis is aimed at keeping track of null variables.
This allows for example verifying properties such as the ab-
sence of null-pointer exceptions at compile time. In addition,
by combining sharing and null information it is possible to
obtain more precise descriptions of the state of the heap.

In type-safe, object-oriented languages class analysis [1, 3, 9,
20], (sometimes called type analysis) focuses on determining,
in the presence of polymorphic calls, which particular imple-
mentation of a given method will be executed at run-time,
i.e., what is the specific class of the called object in the hi-
erarchy. Multiple compilation optimizations can be derived
from having precise class descriptions: inlining, dead code
elimination, etc. In addition, class information may allow
analyzing only a subset of the classes in the hierarchy, which
may result in additional precision.

We propose a novel analysis which infers in a combined way
set sharing, nullity, and class information for a subset of
Java that takes into account however most of its important
features: inheritance, polymorphism, visibility of methods,
etc. The analysis is multivariant, based on the algorithm
of [15], which allows separating different contexts and thus
increasing precision. The additional precision obtained from
context sensitivity has been shown to be important in prac-
tice in the analysis of object-oriented programs [29].

The objective of using a reduced cardinal product [8] of these
three abstract domains is to achieve a good balance between



precision and performance, since the information tracked by
each component helps refine that of the others. While in
principle these three analyses could be run separately, be-
cause they interact (we provide some examples of this), this
would result in a loss of precision or require an expensive
iteration over the different analyses until an overall fixpoint
is reached [5, 8]. In addition note that since our analysis is
multivariant, and given the different nature of the properties
being tracked, performing analyses separately may result in
different sets of abstract values (contexts) for each analy-
sis for each program point. This makes it difficult to relate
which abstract value of a given analysis corresponds to a
given abstract value of another analysis at a given point.
At the other end of things, we prefer for clarity and simplic-
ity reasons to develop directly this three-component domain
and the operations on it, rather than resorting to the devel-
opment of a more unified domain through (semi-)automatic
(but complex) techniques [5, 6]. The final objectives of our
analysis include verification, static debugging, and optimiza-
tion.

The closest related work is that of [24] which develops a
pair-sharing [26] analysis for object-oriented languages and,
in particular, Java. Our description of the (set-)sharing part
of our domain is in fact based on their elegant formaliza-
tion. The fundamental difference is that we track set shar-
ing instead of pair sharing, which can result in increased
accuracy in some situations and can be more appropriate
for certain applications, such as detecting independence in
program parallelization. Also, our domain and abstract se-
mantics track additionally nullity and classes in a combined
fashion which, as we have argued above, is specially useful in
the presence of multivariance. In addition, we also deal di-
rectly with a larger set of object features such as inheritance
or visibility. Finally, we have implemented our domains (as
well as the pair sharing domain of [24]), integrated them in
our multivariant analysis and verification framework, and
benchmarked the results. Our experimental results are en-
couraging in the sense that they seem to support that our
contributions bring more precision at reasonable cost. In
[22], the authors use a distinctness domain in the context
of an abstract interpretation framework that resembles our
sharing domain: if two variables point to different abstract
locations, they do not share at the concrete level. Their
approach is closer to shape analysis [23] than to sharing
analysis, which can be inferred from the former. Although
information retrieved in this way is generally more precise,
it is also more computationally demanding (the examples
in [21] do not exceed one hundred lines) and the abstract
operations are more difficult to design. We also support
some language constructions (e.g., visibility of methods) and
provide detailed benchmarks omitted in their work.

Most recent work [27, 17, 29] has focused on context-sensitive
approaches to the points-to problem for Java. These solu-
tions are quite scalable and precise, but flow-insensitive and
unsound. Therefore, a verification tool based on the results
of those algorithms may raise spurious warnings. In our
case, we are able to express sharing information in a safe
manner, as invariants that all program executions verify at
the given program point.

2. STANDARD SEMANTICS

prog ::= class decl∗

class decl ::= class k1 [extends k2] decl∗ meth decl∗

meth decl ::= vsly (tret|void) meth decl∗ com
vsly ::= public | private
com ::= v = expr | v.f = expr

| decl | skip
| return expr | com;com
| if v (== |! =) (null|w) com else com

decl ::= v:t
var lit ::= v | a
expr ::= null | new k | v.f | v.m(v1, . . . vn) | var lit

Figure 1: Grammar for the language.

The source language used is defined as a subset of Java which
includes most of its object-oriented (inheritance, polymor-
phism, object creation) and specific (e.g., access control) fea-
tures, but at the same time simplifies the syntax, and does
not deal with interfaces, concurrency, packages, and static
methods or variables. Although we support primitive types
in our semantics and implementation, they will be omitted
from the paper for simplicity.

The rules for the grammar of this language are listed in
Fig. 1. The skip statement, not present in the Java standard
specification [10], has the expected semantics. Fig. 2 shows
an example program in the supported language, an alterna-
tive implementation for the java.util.Vector class of the
JDK in which vectors are represented as linked lists. Space
constraints prevent us from showing the full code here,1 al-
though the figure does include the interesting parts that we
will be referring to.

2.1 Basic Notation
We first introduce some notation and auxiliary functions
used in the rest of the paper. By 7→ we refer to total func-
tions; for partial ones we use →. The powerset of a set s
is P(s). We use f : D1 ? D2 to designate functions, i.e.,
possibly infinite tables of pairs such that there are no re-
peated elements of D1. The dom : D1 ? D2 7→ D1 func-
tion returns all the elements in D1 for which an f is de-
fined; for the codomain we will use rng : D1 ? D2 7→ D2.
A substitution f [k1 7→ v1, . . . , kn, 7→ vn] is equivalent to
f(k1) = v1, . . . , f(kn) = vn. We will overload the operator
for sets so that f [K 7→ V ] assigns f(ki) = vi, i = 1, . . . ,m,
assuming |K| = |V | = m. By f |−S we denote removing
from f all pairs (d1, d2) s.t. d1 ∈ S. Conversely, f |S re-
stricts dom(f) to S. In both projections we require S ⊆ D1.
For tuples (f1, . . . , fm)|S = (f1|S , . . . , fm|S). Renaming in
the set s of every variable in S by the one in the same po-
sition in T (|S| = |T |) is written as s|TS . This operator can
also be applied for renaming single variables. We denote by
B the set of booleans.

2.2 Program State and Sharing
With M we designate the set of all method names defined
in the program. For the set of distinct identifiers (variables
and fields) we use V. We assume that V also includes the
elements this (instance where the current method is exe-
cuted), and res (for the return value of the method). In the
same way, K represents the program-defined classes. We do
not allow import declarations but assume as members of K
the predefined classes Pr ={Object,null}.
1Full source code for the example can be found in
http://www.cliplab.org/Users/mario/research/oo shnltau/examples/



class Element{
int value;
Element next;}

class Vector{
Element first;

public void append(Vector v){
if (this != v){

Element e = first;
if (e == null)

first = v.first;
else{while (e.next != null)

e = e.next;
e.next = v.first;

}}}
public void add(Element el){

Vector v = new Vector();
el.next = null;
v.first = el;
append(v);}}

Figure 2: Vector example.

K forms a semi-lattice implied by a subclass relation ↓: K →
P(K) such that if t2 ∈ ↓t1 then t2 ≤K t1. The semantics of
the language implies ↓Object = K and null≤K k ∀k ∈ K.
Given def : K ?M 7→ B, that determines whether a par-
ticular class provides its own implementation for a method,
the boolean function redef : K ? K ?M 7→ B checks if
a class k1 redefines a method existing in the ancestor k2:
redef(k1, k2,m) = true iff ∃k s.t. def(k,m), k1≤K k<K k2.

Static types are accessed by means of a function π : dom(π) 7→
K that maps variables to their declared types. The purpose
of an environment π is twofold: it indicates the set of vari-
ables accessible at a given program point and stores their
declared types. Additionally, we will use the auxiliary func-
tions F (k) (which retrieves the fields of k ∈ K) field type :
K ? V 7→ K (which returns the class of a particular field of
another class assuming f ∈ F (k)), and typeπ(expr) (which
maps expressions to types, according to π).

The description of the memory state is based on the for-
malization in [24, 16]. We define a frame as any element of
Frπ = {φ | φ ∈ dom(π) 7→ Loc ∪ {null}}. A frame repre-
sents the first level of indirection and maps variable names
to locations (where Loc∩{null} = ∅) except if they are null.
The set of all objects is Obj =

˘
k ? φ | k ∈ K, φ ∈ FrF (k)

¯
.

Locations and objects are linked together through the mem-
ory Mem = {µ | µ ∈ Loc 7→ Obj}. A new object of class k
is created as new(k) = k ? φ where φ(f) = null ∀f ∈ F (k).
The object pointed to by v in the frame φ and memory µ can
be retrieved via the partial function obj(φ ? µ, v) = µ(φ(v)).
A valid heap configuration (concrete state φ ? µ) is any el-
ement of Σπ = { (φ ? µ) | φ ∈ Frπ, µ ∈Mem, (φ ? µ) : π}.
We will sometimes refer to a pair (φ ? µ) with δ.

The set of locations Rπ(φ?µ, v) reachable from v ∈ dom(π)
in the particular state φ ? µ ∈ Σπ is calculated as Rπ(φ ?
µ, v) = lfp(∪

˘
Ri

π(φ ? µ, v)
˛̨
i ≥ 0

¯
), the base case being

R0
π(φ ? µ, v) = {(φ(v))|Loc} and the inductive one Ri+1

π (φ ?
µ, v) = ∪

˘
rng(µ(l).φ))|Loc | l ∈ Ri

π(φ ? µ, v)
¯
. Reachabil-

ity is the basis of two fundamental concepts: sharing and
nullity. Distinct variables {v1, . . . , vn} share in the actual
memory configuration φ ? µ if there is at least one common
location in their reachability sets, i.e., ∩n

i=1Rπ(φ?µ, vi) 6= ∅.
A variable v ∈ dom(π) is null in state φ?µ if Rπ(φ?µ, v) = ∅.
Nullity is checked by means of nilπ : Σπ ? dom(π) 7→ B, de-

fined as nilπ(φ ? µ, v) = true iff φ(v) = null.

The run-time type of a variable in scope is returned by
ψπ : Σπ ? dom(π) 7→ K, which associates variables with
their dynamic type, based on the information contained
in the heap state: ψπ(δ, v) = obj(δ, v).k if nilπ(δ, v) and
ψπ(δ, v) = π(v) otherwise. In a type-safe language like
Java runtime types are congruent with declared types, i.e.,
ψπ(δ, v) ≤K π(v) ∀v ∈ dom(π), ∀δ ∈ Σπ. Therefore, a cor-
rect approximation of ψπ can always be derived from π.
Note that at the same program point we might have dif-
ferent run-time type states ψ1

π and ψ2
π depending on the

particular program path executed, but the static type state
is unique.

Denotational (compositional) semantics of sequential Java
has been the subject of previous work (e.g., [2]). In our case
we define a simpler version of that semantics for the sub-
set defined in Sect. 2, described as transformations in the
frame-memory state. The descriptions are similar to [24].
Expression functions EI

πJK : expr 7→ (Σπ 7→ Σπ
′ ) define the

meaning of Java expressions, augmenting the actual scope

π
′

= π[res 7→ typeπ(exp)] with the temporal variable res.
Command functions CI

πJK : com 7→ (Σπ 7→ Σπ) do the same
for commands; semantics of a method m defined in class k is
returned by the function I(k.m) : Σinput(k.m) → Σoutput(k.m).
The definition of the respective environments, given a dec-
laration in class k as tret m(this : k, p1 : t1 . . . pn : tn) com,
is input(k.m) = {this 7→ k, p1 7→ t1, . . . , pn 7→ tn} and
output(k.m) = input(k.m)[out 7→ tret].

Example 1. Assume that, in Figure 2, after entering in
the method add of the class Vector we have an initial state
(φ0 ? µ0) s.t. loc1 = φ0(element) 6= null. After execut-
ing Element e = new Element() the state is (φ1 ?µ1), with
φ1(e) = loc2, µ1(loc2).φ(next) = null, and µ2(loc2).φ(value)
= 0. The second line in the method manipulates primi-
tive values, which are different from locations, producing
µ2(loc2) .φ(value) = i /∈ Loc so Rπ((φ2 ?µ2), e) ∩ Rπ((φ2 ?
µ2), element) = ∅. The creation of v sets loc3 = φ3(v) and
v.first = e links loc2 and loc3 since now µ4(loc3).φ(first) =
loc2. Now v and e share, since their reachability sets in-
tersect at least in {loc2}. Finally, assume that append at-
taches v to the end of the current instance this resulting
in a memory layout (φ5 ? µ5). Given loc4 = obj((φ5 ?
µ5)(this)).φ(first), it should hold that µ5( ∗. . .µ5(loc4).φ(next)
∗. . .).φ(next) = loc3. Now this shares with v and therefore

with e, because loc2 is reachable from loc3.

3. ABSTRACT SEMANTICS
An abstract state σ ∈ Dπ in an environment π approximates
the sharing, nullity, and run-time type characteristics (as
described in Sect. 2.2) of set of concrete states in Σπ. Every
abstract state combines three abstractions: a sharing set
sh ∈ DSπ, a nullity set nl ∈ DN π, and a type member
τ ∈ DT π, i.e., Dπ = DSπ ×DN π ×DT π.

The sharing abstract domain DSπ = {{v1, . . . , vn} ∈ P(dom
(π)) | ∩n

i=1 Cπ(vi) 6= ∅} is constrained by a class reachabil-
ity function which retrieves those classes that are reachable
from a particular variable: Cπ(v) = lfp(∪{Ci

π(v) | i ≥ 0}),



SEI
πJnullK(sh, nl, τ) = (sh, nl

′
, τ

′
)

nl
′
= nl[res 7→ null] τ

′
= τ [res 7→ ↓object]

SEI
πJnew kK(sh, nl, τ) = (sh

′
, nl

′
, τ

′
)

sh
′
= sh ∪ {{res}} nl

′
= nl[res 7→ nnull]

τ
′
= τ [res 7→ {κ}]

SEI
πJvK(sh, nl, τ) = (sh

′
, nl

′
, τ

′
)

sh
′
= ({{res}} ] shv) ∪ {{v, res}} ∪ sh−v

nl
′
= nl[res 7→ nl(v)] τ

′
= τ [res 7→ τ(v)]

SEI
πJv.fK(sh, nl, τ) =


⊥ if nl(v) = null

(sh
′
, nl

′
, τ

′
) otherwise

sh
′
= {{{v}} ] P(s|−v ∪ {res}) | s ∈ shv} ∪ sh−v

nl
′
= nl[res 7→ unk, v 7→ nnull]

τ
′
= τ [res 7→ {field type(π(v), f)}]

SEI
πJv.m(v1, . . . , vn)K(sh, nl, τ) =


⊥ if nl(v) = null

σ
′
otherwise

σ
′
= SEI

πJcall(v,m(v1, . . . , vn))K(sh, nl
′
, τ)

nl
′
= nl[v 7→ nnull]

Figure 3: Abstract semantics for the expressions.

given C0
π(v) =↓ π(v) and Ci+1

π (v) = ∪{rng(F (k)) | k ∈
Ci

π(v)}. By using class reachability, we avoid including in
the sharing domain sets of variables which cannot share in
practice because of the language semantics. The partial or-
der ≤DSπ is set inclusion.

The binary union ] : DSπ × DSπ 7→ DSπ and closure un-
der union ∗ : DSπ 7→ DSπ operators are standard in the
sharing literature [12, 18]; we just filter their results us-
ing class reachability. The relevant sharing with respect to
v is shv = {s ∈ sh | v ∈ s}, which we overloaded for sets.
Similarly, sh−v = {s ∈ sh | v /∈ s}. The projection sh|V is

equivalent to {S | S = S
′
∩ V, S

′
∈ sh}.

The nullity domain is DN π = P(dom(π) 7→ NV), where
NV = {null, nnull, unk}. The order ≤NV of the nullity
values (null ≤NV unk, nnull ≤NV unk) induces a partial
order in DN π s.t. nl1 ≤DNπ nl2 if nl1(v) ≤NV nl2(v) ∀v ∈
dom(π). Finally, the domain of types maps variables to
sets of types congruent with π: DT π= {(v, {t1, . . . , tn}) ∈
dom(π) 7→ P(K) | {t1, . . . , tn} ⊆↓π(v)}.

We assume the standard framework of abstract interpreta-
tion as defined in [7] in terms of Galois insertions. The
concretization function γπ : Dπ 7→ P(Σπ) is γπ(sh, nl, τ) =

{δ ∈ Σπ | ∀V ⊆ dom(π) if
\

vi∈V

Rπ(δ, vi) 6= ∅ then V ∈ sh

and Rπ(δ, v) = ∅ if nl(v) = null, and Rπ(δ, v) 6= ∅ if
nl(v) = nnull, and ψπ(δ, v) ∈ τ(v) , ∀v ∈ dom(π)}.

The abstract semantics of expressions and commands is listed
in Figs. 3 and 4. They correctly approximate the standard
semantics, as proved in Sect. C. As their concrete coun-
terparts, they take an expression or command and map an

input state σ ∈ Dπ to an output state σ
′
∈ Dσ

π
′ where

π = π
′

in commands and π
′
= π[res 7→ typeπ(expr)] in ex-

pression expr. The semantics of a method call is explained
in Sect. 3.1. The use of set sharing (rather than pair shar-
ing) in the semantics allows preventing a loss of precision,

SCI
πJv=exprKσ = ((sh′|−v)|vres, nl′|vres, τ

′′ |−res)

τ
′′

= τ ′[v 7→ (τ(v) ∩ τ ′(res))]
(sh′, nl′, τ ′) = SEI

πJexprKσ

SCI
πJv.f=exprKσ = (sh

′′
, nl

′
, τ

′
)|−res

sh
′′

=

8><>:
⊥ if nl

′
(v) = null

sh
′

if nl
′
(res) = null

shy ∪ sh
′
−{v,res} otherwise

shy = ({{{v}} ] P(s|−v ∪ {res}) | s ∈ sh′v} ∪
{{{res}} ] P(s|−res ∪ {v}) | s ∈ sh′res})∗

(sh
′
, nl

′
, τ

′
) = SEI

πJexprKσ

SCI
πJ if v==null

com1
else com2

Kσ =

8>>>><>>>>:
σ
′
1 if nl(v) = null

σ1 t σ2 if nln(v) = unk
σ1 = SCI

πJcom1K(sh|−v , nl[v 7→ null], τ)
σ2 = SCI

πJcom2K(sh, nl[v 7→ nnull], τ)

σ
′
2 if nl(v) = nnull

σ
′
i = SCI

πJcomiKσ

SCI
πJ if v==w com1

else com2

Kσ =

(
σ
′
2 if sh|{v,w} = ∅

σ
′
1 t σ

′
2 otherwise

SCI
πJcom1;com2Kσ = SCI

πJcom2K(SCI
πJcom1Kσ)

Figure 4: Abstract semantics for the commands.

as shown in the following example.

Example 2. In the add method (Fig. 2), assume that σ =
({{this, el} , {v}}, { this/nnull, el/nnull, v/nnull}) right be-
fore evaluating el in the third line (we skip type information
for simplicity). The expression el binds to res the location
of el, i.e., forces el and res to share. Since nl(el) 6= null the

new sharing is sh
′
= ({{res}}]shel)∪{{res, this}}∪sh−el =

{{res}}]{{this, el}}∪{{v}} = {{res, this} , {res, this, el} ,
{v}}. Note that, for expressing the same information in pair-
sharing, we can only use {{res, this} , {res, el}, {this, el} ,
{v, v}}, which is also the pair-sharing representation of the
more imprecise set sharing {{res, this} , {res, this, el}, {res,
el}, {this, el} , {v}}.

Example 3. Our multivariant analysis keeps two different
call contexts for the append method in the Vector class
(Fig. 2). Their different sharing information shows how
sharing can improve nullity results. The first context corre-
sponds to external calls (invocation from other classes), be-
cause of the public visibility of the method: σ1 = ({{this} ,
{this, v} , {v}}, {this/nnull, v/unk} , {this/ {{vector}} , v/
{{vector}}}). The second corresponds to an internal (within
the class) call, for which the analysis infers that this and
v do not share: σ2 = ({{this} , {v}}, {this/nnull, v/unk} ,
{this/ {{vector}} , v/ {{vector}}}). Inside append, we avoid
creating a circular list by checking that this 6= v. Only
then the last element of this is linked to the first one of v.
We use com to represent the series of commands Element e

= first; if (e==null)...else.. and bdy for the whole
body of the method. Independently of whether the input
state is σ1 or σ2 our analysis infers that SCI

πJcomKσ1 =
SCI

πJcomKσ2 = ({{this, v}} , {this/nnull, v/nnull}, {this/
{{vector}} , v/ {{vector}}}) = σ3. However, the more pre-
cise sharing information in σ2 results on a more precise anal-
ysis of bdy, because of the guard (this!=v). In the case of
the external calls, SCI

πJbdyKσ1= SCI
πJcomKσ1 t SCI

πJskipKσ1=
σ1 t σ3 = σ1. When the entry state is σ2, the semantics at
the same program point is SCI

πJbdyKσ2= SCI
πJcomKσ2 = σ3.

So while the internal call requires v 6= null to terminate, we



cannot infer the final nullity of that parameter in a public
invocation, which might finish even if v is null.

3.1 Method Calls
The semantics of the expression call(v, m(v1, . . . , vn)) in
state σ = (sh, nl, τ) is calculated by implementing the top-
down methodology described in [15]. Let A = {v, v1, . . . , vn}
and F = dom(input(k.m)) be ordered lists. We first cal-
culate the projection σp = σ|A and an entry state σy =
σp|FA. The abstract execution of the call takes place only
in the set of classes K = τ(v), resulting in an exit state

σx =
F
{SCI

πJk
′
.mKσy | k

′
= lookup(k,m), k ∈ K}, where

lookup returns the body of k’s implementation of m, which
can be defined in k or inherited from one of its ancestors;
we assumed that the formal parameters follow the naming
convention F in all the implementations. The abstract ex-
ecution of the method in a subset K ⊆ ↓ π(v) increases
analysis precision and is the ultimate purpose of tracking
run-time types in our abstraction. We now remove the lo-
cal variables σb = σx|F∪{out} and rename back to the scope

of the caller: σλ = σb|A∪{res}
F∪{out}; the final state σf is calcu-

lated as shf = ext(shλ, sh), nlf = nl[res 7→ nlλ(res)], and
τf = τ [res 7→ τλ(res)]. The ext : DSπ × DSπ 7→ DSπ

function for sharing sets is essentially the same as the one
described in [18], but taking into account that res is null
before the call but it might be not null after it.

In Java references to objects are passed by value in a method
call. Therefore, they cannot be modified. However, the
call might introduce new sharing between actual parameters
through assignments to their fields, given that the formal
parameters they correspond to have not been reassigned.
We keep the original information by copying all the formal
parameters (and this) at the beginning of each call, as sug-
gested in [22]. Those copies cannot be modified during the
execution of the call, so a meaningful correspondence can be
established between A and F .

We can do better by realizing that analysis might refine the
information about A within a method and propagating the
new values discovered back to σf . For example, in a method
foo(Vector v){if v!=null skip else throw null}, it is
clear that we can only finish normally if nlx(v) = nnull,
but in the actual semantics we do not change the nullity
value for the corresponding argument in the call, which can
only be more imprecise. Note that the example is different
from foo(Vector v){v = new Vector}, which also finishes
with nlx(v) = nnull. The distinction over whether new at-
tributes are preserved or not relies on keeping track of those
variables which have been assigned inside the method, and
then applying the propagation only for the unset variables.

Example 4. Assume an extra snippet of code in the Vector
class of the form if (v2!=null) v1.append(v2) else com,
which is analyzed in state σ = ({{v1} {v2}} , {v1/nnull,
v2/nnull}, {v1/ {vector} , v2/ {vector}}). Since we have nul-
lity information, it is possible to identify the block com as
dead code. In contrast, sharing-only analyses like [24] can
only tell if a variable is definitely null, but never if it is def-
initely not null. The call is analyzed as follows. Let A =
{v1, v2} and F = {this, v}, then σp = σ|A = σ and the en-
try state σy is σ|FA = ({{this} {v}} , {this/nnull, v/nnull} ,

{this/ {vector} , v/ {vector}}). The only class where append
can be executed is Vector and results (see Example 3) in an
exit state for the formal parameters σb = ({{this, v}} , {this/
nnull, v/nnull}, {this/ {vector} , v/ {vector}}), which is fur-
ther renamed to the scope of the caller obtaining σλ =
({{v1, v2}} , {v1/nnull , v2/nnull}, {v1/ {vector} , v2/ {vector}}).
Since the method returns a void type we can treat res as a
primitive (null) variable so shf = ext({{v1, v2}} , {{v1} {v2}}) =
{{v1, v2}} , nlf = nl[res 7→ null], τf = τ [res 7→ {void}].

4. EXPERIMENTAL RESULTS
In our analyzer the abstract semantics presented in the pre-
vious section is evaluated by a highly optimized fixpoint
algorithm, based on that of [15]. It traverses the program
dependency graph computing dynamically the strongly con-
nected components and keeping detailed dependencies which
track which parts of the graph need to be recomputed when
some abstract value changes during analysis of iterative code
(loops and recursions). This reduces the number of steps and
iterations required to reach fixpoint. This is specially im-
portant since the algorithm implements multivariance, i.e.,
it keeps different abstract values at each program point for
every calling context, and it computes (a superset of) all
the calling contexts that occur in the program. The depen-
dencies kept also allow relating these values along execution
paths (this is particularly useful for example during error
diagnosis or for program specialization).

We now provide some precision and cost results obtained
from the implementation of our set-sharing, nullity, and
class (SSNlTau) analysis. In order to be able to provide
a comparison with previous work, we also implemented the
pair sharing (PS) analysis proposed in [24]. We have ex-
tended somewhat the operations described in [24] extending
it in order to handle some additional cases required by our
benchmark programs such as primitive variables, visibility
of methods, etc. Also, to allow direct comparison, we have
implemented a version of our SSNlTau analysis, which we
will refer to simply as SS, that tracks simply set sharing
using only declared type information and also without the
(non-)nullity component. Also, in order to study the influ-
ence of tracking run-time types we have implemented as well
a version of our analysis with set sharing and (non-)nullity,
but again using only the static types, which we will refer to
as SSNl. In these versions without dynamic type inference
only declared types can affect τ and thus the dynamic typ-
ing information that can be propagated from initializations,
assignments, or correspondence between arguments and for-
mal parameters on method calls is not used. Note however
that the version that includes tracking of dynamic typing
can of course only improve analysis results in the presence
of polymorphism in the program: the results should be iden-
tical (except perhaps for the analysis time) in the rest of the
cases. In order to keep track of this, polymorphic programs
are marked with an asterisk in the tables.

The benchmarks used have been adapted from previous liter-
ature on either abstract interpretation for Java or points-to
analysis [24, 22, 21, 28]. We added two different versions of
the Vector example of Fig. 2. Our experimental results are
summarized in Tables 5 and 6.

The first column (#tp) in Table 5 shows the total number



PS SS SSNl SSNlTau
#tp #rp #up #σ t #rp #up #σ %∆t #rp #up #σ %∆t #rp #up #σ %∆t

dyndisp* 71 68 3 114 30 68 3 114 -2 61 10 103 77 61 10 77 -33
clone 41 38 3 42 52 38 3 50 55 31 10 34 92 31 10 34 74
dfs 102 98 4 103 68 98 4 108 0 91 11 91 89 91 11 91 166
passau* 167 164 3 296 97 164 3 304 23 157 10 288 18 157 10 270 17
qsort 185 142 43 182 125 142 43 204 32 142 43 196 125 142 43 196 119
intgrqsort 191 148 43 159 110 148 43 197 10 148 43 202 107 148 43 202 224
pollet01* 154 126 28 276 196 126 28 423 30 119 35 364 98 98 56 296 35
zipvector* 272 269 3 513 388 269 3 712 164 269 3 791 36 245 27 676 136
cleanness* 314 277 37 360 233 277 37 385 116 276 38 383 38 266 48 385 77

Figure 5: Analysis times, number of program points, and number of abstract states.

of program points (commands or expressions) for each pro-
gram. Column #rp then provides, for each analysis, the
total number of reachable program points, i.e., the number
of program points that the analysis explores, while #up rep-
resents the (#tp−#rp) points that are not analyzed because
the analysis determines that they are unreachable. It can be
observed that tracking (non-)nullity (Nl) reduces the num-
ber of reachable program points (and increases conversely
the number of unreachable points) because certain parts of
the code can be discarded as dead code (and not analyzed)
when variables are known to be non-null. Tracking dynamic
types (Tau) also reduces the number of reachable points,
but, as expected, only for (some of) the programs that are
polymorphic. This is due to the fact that the class analysis
allows considering fewer implementations of methods, but
obviously only in the presence of polymorphism.

Since our framework is multivariant and can thus keep track
of different contexts at each program point, at the end of
analysis there may be more than one abstract state associ-
ated with each program point. Thus, the number of abstract
states inferred is typically larger than the number of reach-
able program points. Column #σ provides the total num-
ber of these abstract states inferred by analysis. The level
of multivariance is the ratio #σ/#rp. It can be observed
that the simple set sharing analysis (SS) creates more ab-
stract states for the same number of reachable points. In
general, such a larger number for #σ tends to indicate more
precise results (as we will see later). On the other hand,
the fact that addition of Nl and Tau reduces the number of
reachable program points interacts with precision to obtain
the final #σ value, so that while there may be an increase
in the number of abstract states because of increased pre-
cision, on the other hand there may be a decrease because
more program points are detected as dead code by the anal-
ysis. Thus, the #σ values for SSNl and SSNlTau in some
cases actually decrease with respect to those of PS and SS.

The t column in Table 5 provides the running times for the
different analyses, in milliseconds, on a Pentium III 2.0Ghz,
1Gb of RAM, running Fedora Core 4.0, and averaging sev-
eral runs after eliminating the best and worst values. The
%∆t columns show the percentage variation in the analysis
time with respect to the reference pair-sharing (PS) analy-
sis, calculated as ∆Dom%t = 100 ∗ (tdom − tPS)/tPS . The
more complex analyses tend to take longer times, while in
any case remaining reasonable. However, sometimes more
complex analyses actually take less time, again because the
increased precision and the ensuing dead code detection re-
duces the amount of program that must be analyzed.

Table 6 shows precision results in terms of sharing, con-
centrating on the SP and SS domains, which allow direct
comparison. Following [5], and in order to be able to com-
pare precision in terms of sharing, column #sh provides the
sum over all abstract states in all reachable program points
of the cardinality of the sharing sets calculated by the analy-
sis. For the case of pair sharing, we converted the pairs into
their equivalent set representation (as in [5])for comparison.
Since the results are always correct, a smaller number of
sharing sets indicates more precision (recall that > is the
power set). This is of course assuming σ is constant, which
as we have seen is not the case for all of our analyses. On
the other hand, if we compare PS and SS, we see that SS
has consistently more abstract states than PS and consis-
tently lower numbers of sharing sets, and the trend is thus
clear that it indeed brings in more precision. The only ap-
parent exception is pollet01 but we can see that the number
of sharing sets is similar for a significantly larger number of
abstract states.

An arguably better metric for measuring the relative preci-
sion of sharing is the ratio %Max = 100∗(1−#sh/(2#vo−1))
which gives #sh as a percentage of its maximum possible
value, where #vo is the total number of object variables in
all the states. The results are given in column %sh. In
this metric 0% means all abstract states are > (i.e., con-
tain no useful information) and 100% means all variables in
all abstract states are detected not to share. Thus, larger
values in this column indicate more precision, since analysis
has been able to infer smaller sharing sets. This relative
measure shows encouraging improvements for SS over PS.

5. CONCLUSIONS
We have proposed an analysis based on abstract interpreta-
tion for deriving precise sharing information for a Java-like
language. Our analysis is multivariant, which allows sep-

PS SS
#sh %sh #sh %sh

dyndisp (*) 640 60.37 435 73.07
clone 174 53.10 151 60.16
dfs 1573 96.46 1109 97.51
passau (*) 5828 94.56 3492 96.74
qsort 1481 67.41 1082 76.34
integerqsort 2413 66.47 1874 75.65
pollet01 (*) 793 89.81 1043 91.81
zipvector (*) 6161 68.71 5064 80.28
cleanness (*) 1300 63.63 1189 70.61

Figure 6: Sharing precision results.



arating different contexts, and combines Set Sharing, Nul-
lity, and Classes: the domain captures which instances share
and which ones do not or are definitively null, and uses the
classes to refine the static information when inheritance is
present. We have implemented the analysis, as well as previ-
ously proposed analyses based on Pair Sharing, and obtained
encouraging results: for all the examples the set sharing do-
mains (even without combining with Nullity or Classes) offer
more precision than the pair sharing counterparts while the
increase in analysis times appears reasonable. In fact the
additional precision (also when combined with nullity and
classes) brings in some cases analysis time reductions. This
seems to support that our contributions bring more precision
at reasonable cost.
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APPENDIX
A. CONCRETE SEMANTICS
We essentially analyze the same language as in [24]; there
is a technical report available [25] containing the standard
semantics of that subset of Java.

B. OTHER SEMANTICS

CI
πJreturn exprK(φ ? µ) = CI

πJout=exprK(φ ? µ)
CI

πJv : tK(φ ? µ) = φ[v 7→ def val(t)] ? µ
CI

πJskipK(φ ? µ) = (φ ? µ)

SCI
πJreturn exprKσ = SCI

πJout=exprKσ
SCI

πJv : tK(sh, nl, τ) = (sh, nl[v 7→ null], τ [v 7→↓t])
SCI

πJskipKσ = σ

C. PROOFS
He have to prove that απ(EI

πJexprK(γπ(σ)) ≤ SEI
πJexprKσ

(alternatively, απ(CI
πJcomK(γπ(σ)) ≤ SCI

πJcomKσ). We de-
note by LHS the left-hand side of the equation, which will be
further rewritten until showing that it is approximated by
the right-hand side (RHS), the semantics described in Fig. 3
and 4. The abstraction function for the sharing component

is απ(S) = {V ⊆ dom(π) | ∃δ ∈ S s.t.
\

vi∈V

Rπ(δ, vi) 6=

∅ and @W ⊆ dom(π) s.t. V ⊂ W and
\

wi∈W

Rπ(δ, wi) 6=

∅}. For the nullity component the abstraction is απ(S) =
{vi/null ∈ dom(π)×DN π | ∀δ ∈ S, Rπ(δ, vi) = ∅} ∪{wi/nnull ∈
dom(π) × DN π | ∀δ ∈ S, Rπ(δ, wi) 6= ∅} ∪{yi/unk ∈
dom(π) × DN π | yi /∈ V, yi /∈ W}. Finally, types in the
set of states S are abstracted as απ(S) = {v/T ∈ dom(π)×
P(K) | ∀δ ∈ S, ψπ(δ, v) ∈ T}.

null

LHS = απ({φ[res 7→ null] ? µ | φ ? µ ∈ γπ(σ)}). How-
ever, the addition of null variables cannot affect the sharing
(from the definition of απ) but only the nullity component.
Therefore, LHS =απ({φ?µ|φ?µ ∈ γπ(σ)}).nl[res 7→ null] =
απ(γπ(σ)).nl[res 7→ null] = (sh, nl[res 7→ null], τ) ≤ SEI

πJnullKσ.
The nullity value for res is trivially correct (same applies for
types); the rest of variables are unaffected. The type value
of res is the most general one and therefore correct.

new k
LHS = απ({φ[res 7→ l]?µ[l 7→ o]|φ?µ ∈ γπ(σ)}). Since l is a
fresh location, res cannot reach any location already pointed
to by another variable. LHS= απ({φ ? µ | φ ? µ ∈ γπ(σ)}) t
({{res}} , {nl 7→ null} , τ) = απ(γπ(sh)) t ({{res}} , {nl 7→
nnull}, τ) = SEI

πJnew kKσ. By semantics of the language,
l is a not null location and therefore the nullity value for
res correctly approximates the standard semantics; the type
value for res is just the one of the class constructor invoked;
the rest of variables see no changes and their current values
for nl and τ remain correct.

v
LHS = απ({φ[res 7→ φ(v)] ? µ | φ ? µ ∈ γπ(σ)}). We will call

the new frame φ
′
. Since res is removed after evaluating an

expression, we only have to check whether its addition to
the frame is properly approximated. The new nullity and



type values correctly approximate the effect of evaluating
the expression, since v was correctly approximated by nl
and τ and now res is a synonym of v; the rest of variables
remain unchanged so (nl[res 7→ nl(v)], τ [res 7→ τ(v)]) is a
correct approximation for them.

If nl(v) = null the semantics is the same as in null; if

not, in the new state φ
′
? µ there is a subset of variables

which did not reach any location reachable from v. Those
variables are unaffected and their previous approximation
sh−v is correct. For the rest of variables, if shv approxi-
mated their reachabilities then shv ] {{res}} is the mini-

mal approximation for (φ
′
? µ

′
) = φ[res 7→ φ(v)] ? µ, since

Rπ((φ
′
?µ

′
), v) = Rπ((φ

′
?µ

′
), res) and therefore there can-

not be any sharing in which v is included but res is not.

v.f
LHS = απ({φ[res 7→ l] ? µ | l = (obj(φ ? µ, v).φ)(f) , φ ? µ ∈
γπ(σ)})=απ({φ

′
? µ}). In a normal execution all those vari-

ables which did not reach a location reachable from v can-
not be reached from res, and therefore they are correctly
approximated by sh−v. Variables {w1, . . . , wn} in (φ ? µ)
verifying Rπ(φ ? µ,wi) ∩ Rπ(φ ? µ, v) 6= ∅ might reach the l
location or be reached from it. Therefore, the only sure in-

formation is that Rπ(φ
′
?µ, v)∩Rπ(φ

′
?µ, res) 6= ∅, informa-

tion captured by {{v}} ] {{res}}. The remaining possibili-
ties (including those already existing in φ ? µ) are correctly
abstracted by {{{v}} ] P(s|−v ∪ {res}) | s ∈ shv}, since
we create a set for every possibility in a sharing set of shv

but without introducing impossible sharings: for example, if
{{V,A} , {V,B}} was the starting state, the expression v.f
cannot introduce sharing between A and B and the result
is {{V,A} , {V,A,Res} , {V,B} , {V,B,Res}}. The nullity
value for res is correct since it is the most general one.

call(v,m(v1, . . . , vn))
See the description of the fixpoint algorithm in [14].

v = expr

LHS =(απ({φ
′
[v 7→ φ

′
(res)])|−res) ? µ

′
| φ ? µ ∈ γπ(σ)}).

The proof is analogous to the one of the v expression. As-
sume that the semantics EI

πJexprK is correct, the concrete
semantics of the assignment is identical to that of expres-
sion evaluation, just exchanging the res and v variables. In
the case of nullity and types, the resulting state just re-
places res by v, which is the result of overwriting v values
with those of res and then remove any appereance of res.

The sharing component is more complex. First, all previ-
ous sharings of v are deleted (sh′ = sh|−{v}) and it now
appears in all sharing groups where res was, approximated
by (sh′−res ∪ (shres ] {{v}}))|−res = sh′−res ∪ (sh′res|vres)
= sh′|vres = (SCI

πJv=exprKσ).sh.

v.f= expr
Analogous to the v.f proof, but taking into account that
res might share with other variables (and has to be removed
after the assignment). In this case, we propagate the created
sharing sets through the star operation [12, 18].

if v==w com1 else com2

If sh|{v,w} = ∅, then @δ ∈ γπ(σ) s.t. φ(v) = φ(w) by def-

inition of γπ(σ). Therefore, LHS=απ(CI
πJif...K({φ ? µ ∈

γπ(σ) | φ(v) 6= φ(w)}))=απ(CI
πJcom2K({φ?µ ∈ γπ(σ) | φ(v) 6=

φ(w)}))=απ(CI
πJcom2K({φ?µ ∈ γπ(σ)}))≤ SCI

πJcom2Kσ =RHS.

If sh|{v,w} 6= ∅, then we might have φ(v) = φ(w) and

LHS= απ(CI
πJcom1K({φ ? µ ∈ γπ(σ) | φ(v) = φ(w)})) t

απ(CI
πJcom2K({φ?µ ∈ γπ(σ) | φ(v) 6= φ(w)}))≤ απ(CI

πJcom1K
({φ ? µ ∈ γπ(σ)})) t απ(CI

πJcom2K({φ ? µ ∈ γπ(σ)})) ≤
SCI

πJcom1Kσ t SCI
πJcom2Kσ=RHS.

if v==null com1 else com2

If σ.nl[v] = null, the concretization function ensures φ(v) =
null ∀φ ? µ ∈ γπ(σ) thus LHS=απ(CI

πJif...K({φ ? µ ∈
γπ(σ) |φ(v) = null})) =απ(CI

πJcom1K({φ?µ ∈ γπ(σ) |φ(v) =
null}))= απ(CI

πJcom1K({φ ? µ ∈ γπ(σ)})) ≤ SCI
πJcom1Kσ

=RHS. A similar reasoning can be applied for the case where
nl[v] = nnull.

If nl[v] = unk, LHS=απ(CI
πJif...K({φ ? µ ∈ γπ(σ) | φ(v) =

null})) t απ(CI
πJif...K({φ?µ ∈ γπ(σ) |φ(v) = nnull})). The

first term is equivalent to απ(CI
πJcom1K)({φ?µ ∈ γπ(σ)|φ(v) =

null})) = απ(CI
πJcom1K)({φ ? µ ∈ γπ(sh|−v, nl[v 7→ null])})

(by definition of γπ), which is ≤ SCI
πJcom1K(sh|−v, nl[v 7→

null]). In an analogous way, the second term is απ(CI
πJcom2K({φ?

µ ∈ γπ(σ)|φ(v) 6= null})) = απ(CI
πJcom2K)({φ?µ ∈ γπ(sh, nl[v 7→

nnull])}) ≤ SCI
πJcom2K(sh, nl[v 7→ nnull]). Therefore, the

left-hand side of the equation is approximated by the se-
mantics given.

com1;com2

True by correctness of the composition of correct operations.


