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Abstract

It has been shown that it is possible to exploit Independent/Restricted
And-parallelism in logic programs while retaining the conventional “don’t
know” semantics of such programs. In particular, it is possible to par-
allelize pure Prolog programs while maintaining the semantics of the
language. However, when builtin side-effects (such as write or assert)
appear in the program, if an identical observable behaviour to that of se-
quential Prolog implementations is to be preserved, such side-effects have
to be properly sequenced. Previously proposed solutions to this problem
are either incomplete (lacking, for example, backtracking semantics) or
they force sequentialization of significant portions of the execution graph
which could otherwise run in parallel. In this paper a series of side-effect
synchronization methods are proposed which incur lower overhead and
allow more parallelism than those previously proposed. Most impor-
tantly, and unlike previous proposals, they have well-defined backward
execution behaviour and require only a small modification to a given
(And-parallel) Prolog implementation.

1 Introduction

It has been shown [10, 9] that it is possible to exploit Independent And-
parallelism (where only sets of goals which do not share variables can be
executed in parallel – [4], [3], [11], [2], [7], [12], [16], [17], ...) while retaining
the conventional “don’t know” semantics of such programs. In particular, it is
possible to parallelize pure Prolog programs while maintaining the full syntax
and semantics of the language. However, when builtin side-effects (such as
write or assert) appear in the program, if an identical behaviour to that of
sequential Prolog implementations is to be preserved, such side-effects have
to be properly sequenced. For example, consider the following clause

p(X,Y) :- a(X), write(X), b(X,Y), write(Y).
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and assume that X and Y are always bound to ground terms upon entry into
p. In this case all subgoals in the body of p are independent and could in
principle be executed in parallel.

However, because of the presence of side-effects, the four subgoals cannot
be truly executed in parallel or in any arbitrary order if a behavior identical to
that of a sequential execution is to be preserved: a(X) and b(X,Y) can be first
executed in parallel while the execution of write(X) should be delayed until
the execution of a(X) is over. This is necessary to avoid X being written in case
a(X) fails. Similarly, the subgoal write(Y) should wait for the completion
of execution of subgoals b(X,Y) and write(X). The same argument will hold
if write(X) and write(Y) are replaced by subgoals a1(X) and b1(Y) which
are ‘side-effect procedures’ (i.e. they contain a call to a side-effect within the
subtree that they generate).

One simple solution, for example, chosen in PEPSys [16], is to separate
the program into sequential and parallel modules, with side-effects only being
allowed in sequential ones. This solution is correct although it can potentially
force sequentialization of significant portions of the program which could oth-
erwise run in parallel. Some other solutions have been proposed within the
scope of Or-parallelism [6], generally based on a run-time exploration of the
execution tree to the left of a given side-effect. A side-effect synchronization
method along these lines is proposed as an alternative in [13].

If side-effects are allowed within parallel code and a behaviour of the pro-
gram identical to that observable on a sequential implementation is to be
preserved then a good solution appears to be to add some sort of synchro-
nization code to the program. In [5], DeGroot proposed a solution along such
lines, based on the use of “synchronization blocks.” DeGroot’s approach is (at
least during forward execution) correct and achieves its objective. However,
it also suffers from the following limitations:

• First, and most importantly, as mentioned by DeGroot, the model is in-
complete because it has no backtracking semantics, i.e. it only solves the
side-effect synchronization problem if no goal fails during the execution
of the program.

• The method is based on the use of synchronization blocks, which are
complex data structures that are external to the standard Prolog storage
model. This complicates the implementation so that relatively signifi-
cant modifications to the parallel abstract machine may be required.

• DeGroot’s method is only applied to the case when all goals in the
program are executed in parallel. The case where there is a mixture of
sequential and parallel goals (and, more generally, the case where sets
of goals can conditionally be executed either sequentially or in parallel)
needs to be addressed.

• Also, in DeGroot’s method all side-effects are synchronized by a single
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chain of synchronization blocks (semaphores). This limits parallelism
unnecessarily.

• Finally, DeGroot’s method doesn’t make any provision for “parallel
builtins.”

In this paper we present a new solution to the side-effect synchronization
problem (and we also mention two other alternatives). This solution is based
on ideas similar to DeGroot’s but solves all the shortcomings pointed out
above.

The rest of the paper is organized as follows. Sections 2.1 and 2.2 intro-
duce some annotation syntax and terminology. Section 2.3 then describes a
desirable behavior of an And-parallel system in the presence of side-effects,
and presents our technique for synchronizing side-effects in order to achieve
such behaviour. Section 3 shows how the model operates during backtrack-
ing and describes the abstract machine modifications needed to implement
such operation. Section 4 then describes some optimizations which reduce
the number of semaphores needed and increase the attainable parallelism.
Finally, section 5 presents two alternative implementation methods, and sec-
tion 6 summarizes our conclusions.

2 A Backtrackable Method for Synchronizing Side-Effects

2.1 &-Prolog and the RAP-WAM Model: An Annotation for
Parallelism

We believe that the techniques presented herein are applicable to most mod-
els based on Independent And-parallelism. However, for the sake of concrete-
ness, the discussion will be presented in terms of the Independent/Restricted
And-parallel (RAP-WAM) model [7, 8]. This model has its roots in DeG-
root’s seminal work on Restricted And-Parallelism [4]. RAP-WAM completes
DeGroot’s RAP by providing backward execution semantics to the model,
improved graph expressions (&-Prolog’s CGEs)[7],1 and an efficient imple-
mentation model based on the Warren Abstract Machine (WAM) [14]. The
RAP-WAM model is used in this paper not only for the sake of concreteness
but also because of the convenience of its Prolog-compatible source language,
&-Prolog, which makes it possible to discuss the side-effect synchronization
techniques directly on the source program and to describe and implement the
algorithms for adding side-effect synchronization code as a series of rewritings
of the original Prolog program.

&-Prolog is basically Prolog, with the addition of the parallel conjunction
operator “&” and a set of parallelism-related builtins, which includes several

1&-Prolog’s CGEs offer Prolog syntax and permit conjunctive checks, thus overcoming
the difficulty in expressing ‘sufficient’ conditions for independence with the expressions pro-
posed by DeGroot: given “f(X,Y,Z):- g(X,Y), h(Y,Z).” the most natural annotation for
this clause, that g and h can run in parallel if the terms in X and Z don’t share variables and Y

is bound to a ground term, can be expressed easily with CGEs (“f(X,Y,Z):- (indep(X,Z),

ground(Y) => g(X,Y) & h(Y,Z) ).”) but is very difficult with DeGroot’s expressions.
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types of groundness and independence checks, and synchronization primitives.
Parallel conditional execution graphs (which cause the execution of goals in
parallel if certain conditions are met) can be constructed by combining these
elements with the normal Prolog constructs, such as “->” (if-then-else). For
syntactic convenience (and historical reasons), an additional construct is also
provided: the Conditional Graph Expression (CGE). A CGE has the general
form
( i cond => goal1 & goal2 & ... & goalN )
where the goali are either normal Prolog goals or other CGEs, and i cond
is a condition which, if satisfied, guarantees the mutual independence of the
goalis. The CGE can be viewed simply as syntactic sugar for

( i cond -> goal1 & goal2 & ... & goalN
; goal1 , goal2 , ... , goalN )

i.e., the operational meaning of the CGE is “check i cond, if it succeeds ex-
ecute the goali in parallel, else execute them sequentially.” The goali can
themselves be CGEs, i.e. CGEs can be nested in order to create more com-
plex execution graphs. i cond can in principle be any set of Prolog goals but
is in general either true (an “unconditional CGE”) or a conjunction of checks
on the groundness or independence of variables appearing in the goalis. Thus,
the following &-Prolog clause

p(X,Y) :- q(X,Y), r(X), s(X).

could perhaps be rewritten for parallel execution as

p(X,Y) :- (ground(X) => q(X,Y) & r(X) & s(X) ).

or, with the same meaning as the CGE above, as

p(X,Y) :- (ground(X) -> q(X,Y) & r(X) & s(X)
; q(X,Y), r(X), s(X) ).

or, perhaps, and still within &-Prolog, as

p(X,Y) :- (ground(X) -> q(X,Y) & r(X) & s(X)
; q(X,Y), (ground(X) -> r(X) & s(X)

; r(X), s(X) )).

In the current RAP-WAM system, the task of parallelizing a given pro-
gram (performing rewritings of it such as those above) is in general performed
automatically by the RAP-WAM compiler, based either on local (clause-level)
analysis, or on a global, abstract interpretation-based analysis [15] that often
makes run-time independence checks unnecessary. The full power of &-Prolog
is, however, also available to the user for manual parallelization if so desired.
For the purposes of this paper it will be assumed that the program is already
annotated with CGEs. Also, it will be assumed that such CGEs are not
nested. This can be done without loss of generality by assuming that nested
CGEs are “pulled out” as separate clauses. Furthermore, for simplicity, only
unconditional CGEs (i.e. where i cond is true) will be used. The method,
however, is just as valid for any &-Prolog clause, as shown in section 4.1.
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2.2 Some Terminology

• A Prolog builtin predicate which has side-effects is called a side-effect
builtin (seb).

• Furthermore, these sebs are classified as soft-sebs and hard-sebs. Soft-
sebs are those side-effects which do not affect the following computation
(e.g write). Hard-sebs are those side-effects which alter the contents of
the prolog database and hence can affect the following computation (e.g.
assert).

• A clause that has at least one subgoal which is either a side-effect builtin
or a side-effect procedure (sep) is called a side-effect clause(sec). Fur-
thermore, it is classified as a hard-sec if it has at least one subgoal which
is a hard-seb or a hard-sep. Otherwise, it is classified as a soft-sec.

• A procedure that contains at least one side-effect clause is called a side-
effect procedure(sep). It is classified as a hard-sep if it contains at least
one hard-sec. Otherwise, it is classified as a soft-sep.

• Procedures which are neither sebs or seps are classified as pure proce-
dures.

2.3 Synchronizing Side-Effects with Semaphores

As mentioned before, one approach towards ensuring that the order of execu-
tion is preserved is to add some sort of synchronization code to the program.
DeGroot’s solution [5] is based on the use of “synchronization blocks.” In
DeGroot’s description a synchronization block (sb) consists of two memory
words: the first word (sb.ecnt) is used to maintain a count of goals involved
in the synchronization, while the second word(sb.signal) is used for signal-
ing the completion of a side-effect predicate. These synchronization blocks
are presumably allocated from a special memory area devoted to this pur-
pose. DeGroot also defines abstract operations which create and manage
these blocks.

We will describe our method by making incremental modifications to
DeGroot’s.2 The first step is to make use of normal Prolog objects to imple-
ment the synchronization blocks. Let us in principle define a “Synch-Block”
as the Prolog structure (Signal,Ecnt). This is the same as DeGroot’s syn-
chronization blocks except that synch-blocks are standard Prolog structures
containing logical variables. This helps in two ways:

• This method has the advantage that a small set of new Prolog builtins is
all that is required to implement all synchronization operations. These
are described later in this section. Also, semaphores are allocated from
(and integrated into) the normal Prolog storage model. Finally, no

2In attention to the reader, the explanation will be however self-contained so that no
prior knowledge of DeGroot’s method is required.
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:- foo.
foo :- s1 & s2.
s1 :- a & s3.
s2 :- b & s4 & c.
a :- d & e.
s3 :- f & sse & g.
b :- h.
s4 :- j & hse.
c :- k & l.

Figure 1: Example program with side-effects

change in the syntax of the language is required: annotation of a clause
with semaphores can be performed as a rewriting of the clause.

• In addition, correct backtracking behaviour is guaranteed because the
Synch-Blocks are integrated within the standard backtracking machin-
ery. No additional program annotation is needed for implementing back-
tracking in the presence of side-effects. This is explained in section 3.

Now, let us analyze how synch-blocks are actually used. As explained
in DeGroot [5], the variable Signal takes on the values yes and no and
the variable Ecnt takes on values from the set of natural numbers. Informally
speaking, Signal indicates whether a side-effect builtin has finished executing
(yes or no) and Ecnt has the count of the number of “pure” subgoals that
are yet to finish executing before a side-effect builtin can start executing.

We now show how the synch-block structure can be simplified. As a first
step, let us focus on the values taken by Signal. We replace yes with the
number 1 and no with the number 0. Next, we define a semaphore Sem
equivalent to the synch-block (Signal,Ecnt) as follows:

Sem = 2 * Ecnt + Signal

Observe that the values of Signal and Ecnt can be obtained from Sem as
follows:

Signal = Sem mod 2; Ecnt = Sem div 2

So, essentially, the semaphore Sem carries the same information as the synch-
block (Signal,Ecnt), but is simpler in structure, being a single logical vari-
able.

To illustrate how semaphores can be used to synchronize side-effects, con-
sider the example program in Figure 1. For the sake of clarity, all the CGEs
have their i conds equal to true and also, the predicates do not have any
arguments. In this program, sse is a soft-seb and hse is a hard-seb. s1, s2,
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Figure 2: Execution tree and arrangement of segments

(1) Subgoals in pure1 and pure2 can together be executed in
parallel.
(2) Subgoal sse can be started only after the subgoals in pure1
have been executed.
(3) Similarly, subgoal hse can be started only after sse and the
subgoals in pure1 and pure2 have been executed.
(4) Finally, since hse is a hard side-effect builtin, the
subgoals in pure3 have to wait for the completion of hse.

Figure 3: Conditions for proper execution of program in Figure 1

s3, s4 are side-effect procedures and a, b, c, d, e, f, g, h, j, k, l
are ‘pure’ procedures.

This program has an execution tree as shown in Figure 2. It can be seen
that the leaves of this tree can be divided into alternating segments: pure1(d,
e, f), then a soft side-effect builtin(sse), then pure2(g,h,j), then a hard
side-effect builtin(hse) and finally, pure3(k,l). Figure 3 lists the conditions
to be satisfied for the proper execution of the program.

To satisfy the conditions in Figure 3 and still attain maximum parallelism
in the execution of this program, three semaphores Sem1, Sem2, Sem3 are
added to it. (Informally, one can think of Sem1 as the semaphore for the
subgoals in pure1 and Sem2 as the semaphore for the subgoals in pure2 and
Sem3 as the semaphore for the subgoals in pure3).

When the program is started, Sem1 = 1. This is because pure1 has no
side-effect builtin to its “left” and so the subgoals in pure1 can start executing
immediately. But, since sse and hse, the side-effect builtins to the “left” of
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pure2 and pure3 respectively, are not yet finished, Sem2 and Sem3 start out
with the value 2. This indicates that the side-effects sse and hse are not yet
done.

Now, the values of the semaphores are changed as follows:
Sem1 := Sem1 + 3*2 (for the 3 subgoals in pure1)
Sem2 := Sem2 + 3*2 (for the 3 subgoals in pure2)
Sem3 := Sem3 + 2*2 (for the 2 subgoals in pure2)

The subgoals in pure segments wait for the values of the corresponding
semaphores to become odd and then they start executing. The side-effect
builtins wait for the corresponding semaphores to be equal to 1 and then
they start executing. For example, the subgoals in the segment pure1 (i.e.
d,e,f) wait on Sem1 being odd. Since this condition is true when the program
is started, subgoals d,e,f immediately start executing in parallel. Note that
none of the side-effect builtins (sse and hse) or the pure segments(pure2,
pure3) can be executed at this time, because their waiting conditions are
not satisfied. After each of the subgoals in pure1 has been executed, Sem1
is decremented by 2, so that when all the 3 subgoals are done with their
execution, Sem1 has the value 1. Now, the side-effect builtin sse which was
waiting on (Sem1 = 1), starts executing and when it is done, decrements Sem2
by 2 and makes the value of Sem2 odd (by incrementing Sem2 by 1 if it is even
and by doing nothing if it is already odd).This triggers the execution of the
subgoals in the segment pure2 which were waiting on Sem2 being odd. The
same pattern of execution is repeated. In summary, the execution order of
the subgoals in the leaves of Figure 2 follows the conditions in Figure 3. The
conditions on which the various segments wait are illustrated in Figure 4.

Observe that even though condition 1 in Figure 3 states that subgoals in
segments pure1 and pure2 can be executed in parallel (since sse is a soft side-
effect builtin), in the execution sequence that we have described so far, pure1
is first executed in parallel and then, pure2 is executed in parallel. So, we have
not achieved maximum potential parallelism in the execution of the subgoals.
To realize this goal, all we have to do is to make Sem2 odd at the beginning.
This triggers the parallel execution of the subgoals in pure2 immediately.

Before we annotate this program with semaphores, we need to define cer-
tain operations on them. These operations are as follows:

wait odd(Sem) The current process waits on Sem being odd.
wait one(Sem) The current process waits on Sem = 1.
inc2(Sem,N) Backtrackable, atomic increment: increments Sem by 2N.
dec2(Sem) Backtrackable, atomic decrement: decrements Sem by 2.
make odd(Sem) Backtrackable, atomic operation:

Increments Sem by 1 if it is even, else no-op.

All these operations have backtracking semantics, which are described in sec-
tion 3. Figure 5 shows the program in Figure 1 annotated by semaphores.
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Figure 4: Synchronization between segments

3 Backtracking in the Presence of Side-Effects

In this section, we show how, in the model presented herein, backtracking can
still be supported while correctly sequencing the side-effects.

Consider the following program:

:- s1.
s1 :- a, ( b & s2 & c ), d.
s2 :- e & hse & f.

Here, a,b,c,d,e,f are pure procedures and hse is a side-effect builtin. Thus,
s1, s2 are side-effect procedures. First, let’s consider how backtracking
would proceed in the normal case, i.e. if hse were not a side-effect. We
assume in principle that the backtracking method presented in [9, 7] is used.
This method dictates that if after the CGE ( b & s2 & c ) is entered one
of b, s2 or c fails, then the other two goals will be “killed” and execution
will return to the next alternative of a (“inside” backtracking). If, however,
the CGE is exited successfully and d fails, the rightmost of b, s2, c with
alternatives will be found, redone, and execution will proceed in parallel again
with the rest of the goals in the CGE to the right of the one being redone.

Since, on the other hand, hse is a hard side effect and, therefore, s2 a
side-effect procedure, the program would be annotated as follows:

:- Sem1 = 1, Sem2 = 2, s1(Sem1,Sem2).
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:- Sem1 = 1, Sem3 = 2, foo(Sem1,Sem3).
foo(Sem1,Sem3):-Sem2 = 2,

(s1(Sem1,Sem2) & s2(Sem2,Sem3)).
s1(Sem1,Sem2):- inc2(Sem1,1), make_odd(Sem2),

((wait_odd(Sem1),a,dec2(Sem1)) & s3(Sem1,Sem2)).
s2(Sem2,Sem3):- inc2(Sem2,1), inc2(Sem3,1),

((wait_odd(Sem2),b,dec2(Sem2)) & s4(Sem2,Sem3) &
(wait_odd(Sem3),c,dec2(Sem3))).

a :- d & e.
s3(Sem1,Sem2):- inc2(Sem1,1), inc2(Sem2,1),

((wait_odd(Sem1),f,dec2(Sem1)) &
(wait_one(Sem1),sse,dec2(Sem2),make_odd(Sem2)) &
(wait_odd(Sem2),g,dec2(Sem2))).

b :- h.
s4(Sem2,Sem3):- inc2(Sem2,1),

((wait_odd(Sem2),j,dec2(Sem2)) &
(wait_one(Sem2),hse,dec2(Sem3),make_odd(Sem3))).

c :- k & l.

Figure 5: Program annotated with semaphores

s1(Sem1,Sem2) :- a, inc2(Sem1,1), inc2(Sem2,1),
((wait_odd(Sem1),b,dec2(Sem1)) &
s2(Sem1,Sem2) &
(wait_odd(Sem2),c,dec2(Sem2))
),d.

s2(Sem1,Sem2) :- inc2(Sem1,1), inc2(Sem2,1),
((wait_odd(Sem1),e,dec2(Sem1)) &
(wait_one(Sem1),hse,make_odd(Sem2),dec2(Sem2))
& (wait_odd(Sem2),f,dec2(Sem2))
).

It is important to note that, as mentioned before, dec2(Sem), inc2(Sem,
Int) and make odd(Sem) are “backtrackable” procedures, i.e., they undo the
effects created by them on their parameters when they backtrack. The back-
tracking behavior of these procedures is described as follows:

make odd(Sem) does nothing if Sem is already even,
else atomically decrements Sem by 1 if Sem is odd.

dec2(Sem) atomically increments Sem by 2.
inc2(Sem,N) atomically decrements Sem by 2N.

Note that the backtracking behaviors of these procedures are the reverse of
what they do in the forward direction, as it should be. Also note that no
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Figure 6: Implementation of Backtrackable Increment and Decrement

backtracking behavior needs to be described for the “waiting” procedures
wait odd and wait one. One way of implementing this backtracking be-
haviour in a WAM-based, parallel abstract machine such as the RAP-WAM
[7] is by having each worker record in its trail the actions performed by it
on the semaphores, as shown in figure 6. This figure shows two snapshots
of the trail of two workers, one just before the CGE in s1 is entered, and
the other one while the execution of b and s2 is proceeding in parallel. Note
that this implementation is similar to that of setarg in SICStus Prolog [1],
but the nature of the action (i.e. increment, decrement, etc.) rather than
the previous value is saved. This is recorded as a tag for the trail entry (I -
increment, D - decrement, A - normal trail entry, etc.), the rest of the entry
being the address of the semaphore. This is important since increments and
decrements can occur in any order. A value – the amount of increment – is
saved, however, for the inc2 primitive. Also note that, depending on the op-
timizations implemented in the abstract machine, the variables that are used
as semaphores should be marked as permanent (or even moved to the heap)
to prevent possibly incorrect deallocation from last call- and other possible
optimizations.

Now we describe how backtracking is done in two cases viz., (1) when d
fails (case 1) and (2) when c fails (case 2).

• In case 1, assume that the subgoal e has unexplored alternatives, while
hse, f, c do not. When d fails, alternatives for the subgoals in the
CGE have to be explored and this is done with the subgoals being con-
sidered in the right-to-left order. Unwinding of the subgoal c leads to
Sem2 = 3, with Sem1’s value not being changed. Unwinding of the sub-
goal s2 leads to unwinding of the subgoals e, hse, f. This leads to
Sem1 = 3 and Sem2 = 6. Now, the subgoals e, hse, f, c are all re-
started in parallel and it is clear that parallelism is obtained, maintain-
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ing at the same time the sequential behavior necessary in the presence
of side-effects. If the CGE succeeds, the subgoal d can be tried again.

• In case 2, assume that the subgoal a has unexplored alternatives. Since
c has failed, the CGE cannot succeed, so backtracking has to be done
for all the subgoals in this CGE, i.e. for b, s2, c. Note, however, that
b and s2 cannot be simply “killed” because in the sequential model s2
would have completed and produced its side-effect before c’s failure.
The idea again is to mimic the behaviour of the sequential model. A
conservative modification of the “inside” backtracking actions which
assures compatibility with the sequential model follows: if a goal fails,
all goals to its right in the CGE are killed as before. Also, all goals to the
left of the failing goal up to the previous side-effect goal are killed. The
rest of the goals are allowed to continue to completion, after which they
are all backtracked (including the side-effect goal, which may have other
alternatives) by recursively applying the algorithm. It is clear from the
backtracking behaviors of the synchronization procedures that after this
is done, Sem1 and Sem2 are restored to their respective values of 1 and
2. Now a succeeds with an alternative binding for the variables and the
CGE is reexecuted with the correct initial values for the semaphores.

Thus, backtracking in the presence of side-effects is relatively simple in
this model. Nothing special is required because the semaphores are imple-
mented as logical variables. Some optimizations can be made on this model.
For example, in case 1, if the subgoal c has unexplored alternatives, no back-
tracking has to be done on Sem2 and also, the re-execution of the subgoal c
need not be accompanied by any waiting or decrementing operation on Sem2.
But implementing this optimization will require primitives in addition to the
ones described in Hermenegildo [7].

4 Optimizations and Other Issues

4.1 When the i cond is non-empty

Our previous discussion was limited to CGEs with i cond = true. In this
section, we show how a conditional CGE is annotated with semaphores. Con-
sider the following clause:

s1 :- (i cond => a & se1 & b & se2 & c).

a, b, c are pure procedures and se1 and se2 are side effect builtins. If se1
and se2 were not side-effect builtins, this clause would have been annotated
as:

( i_cond -> a & se1 & b & se2 & c
; a , se1 , b , se2 , c )

The presence of side effects changes the annotation as follows:
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s1(Sem1,Sem2) :-
( i_cond ->

Sem3 = 2, inc2(Sem1,1),
inc2(Sem2,1), inc2(Sem3,1),
( (wait_odd(Sem1),a,dec2(Sem1)) &

(wait_one(Sem1),se1,make_odd(Sem3),dec2(Sem3)) &
(wait_odd(Sem3),b,dec2(Sem3)) &
(wait_one(Sem3),se2,make_odd(Sem2),dec2(Sem2)) &
(wait_odd(Sem2),c,dec2(Sem2)) )

; a, se1, b, se2, c, dec2(Sem2), make_odd(Sem2) ).

Let us call the code that is executed if i cond succeeds as parallel code and
the code that is executed if i cond fails as sequential code. The following
points are worth noting:

• The parallel code needs the use of a new semaphore Sem3 (because of
the two side-effects in the body), while the sequential code doesn’t.

• While the parallel code has several synchronization primitives oper-
ating on the various semaphores, the sequential code operates only on
Sem2 and this is just to signal that the side-effect builtin corresponding
to Sem2 has been completed.

Several such optimizations can be used while annotating a given program with
semaphores.

4.2 When Side-Effects Don’t Need to be Synchronized

Another observation which can be made is that sometimes the user doesn’t
really care in which order side-effects are executed, i.e. the user doesn’t need
the parallel system to produce identical results (and in the same order) to
those of sequential implementation. For this purposes we propose to include
a whole new set of “parallel built-in side-effect predicates,” for which no syn-
chronization code is generated. For example, there would be a p write/1
version of the standard write/1 predicate, and similarly for other side-effect
built-ins. An example showing the use of the p format/3 predicate is shown
below. This predicate locks access to the stream that it is writing to but
is otherwise not synchronized with other builtins. Note that in the exam-
ple, since each do x parallel goal identifies its output in the file, we don’t
care in which order each of them writes into the file. The introduction of
parallel side-effects such as p format/3 allows for more parallelism (and less
overhead due to synchronization chores) that is attainable if the sequential
Prolog semantics is enforced.

p(X,FileName) :-
( ground([X,FileName]) => do_a(X,FileName) &

do_b(X,FileName) &
do_c(X,FileName) ).
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do_a(X,FileName) :-
do_a_lot(X,Result),
p_format(’Result of a = %i’,[Result],FileName).

do_b(X,FileName) :-
do_b_lot(X,Result),
p_format(’Result of b = %i’,[Result],FileName).

do_c(X,FileName) :-
do_c_lot(X,Result),
p_format(’Result of c = %i’,[Result],FileName).

4.3 Multiple Synchronization Chains

Sometimes, even if the standard Prolog behaviour is to be preserved, it turns
out that some aspects of the order in which side-effects are executed are not
observable and therefore the synchronization requirements can be relaxed.
Consider, for example, the case when parallel goals are writing to two dif-
ferent files: only the order of writing within each file needs to be preserved.
However, it is still required that the “pure” procedures preceding the side
effects be completed before the side effects are themselves executed. Consider
the following example:

s1(X,Y) :- ( ground([X,Y]) => a(X) & write(file1,X) &
b(Y) & write(file2,Y) ).

Here, a(X), b(Y) are pure procedures. Since there are two side effects in this
CGE, we need three semaphores, Sem1, Sem2, Sem3. Normally Sem2 has the
initial value of 2. This forces write(File2,Y) to follow write(File1,X).
However, in this case, there is no need to sequentialize the two write state-
ments since they write to different files. So, we can intialize Sem2 to 0. This
has the effect that it does not sequentialize the two write statements. This
is a very useful optimization especially if the write statements take a long
time to complete.

The following example further illustrates the point:

s1(X,Y) :- (ground(X) => foo(X) & a(X) & bar(Y) & b(X) ).
a(X) :- do_a_lot(X,Res1,Res2),

write(Res1,file1), write(Res2,file1).
b(X) :- do_b_lot(X,Res1,Res2),

write(Res1,file2), write(Res2,file2).

Other optimizations beyond those presented in sections 4.3 and 4.2 are
described in [13].

5 Two Alternative Methods Using Semaphores

In this section, we describe two different variations on the same idea of im-
plementing semaphores. The first method’s objective is to avoid introducing
semaphores as additional arguments for the side-effect predicates. The second
method encodes the information in synch-blocks in a different way from what
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was described before. These methods and the associated program transfor-
mations are described in more detail in [13].

5.1 Method 1: Reducing the Argument-Passing Overhead

In section 2.3, semaphores were introduced as additional arguments for the
side-effect predicates. This results in

• compile time overhead – additional work done in adding the sema-
phores as arguments to the side-effect predicates.

• runtime overhead – more arguments for the side-effect predicates im-
ply a longer runtime for the program, even though they contribute noth-
ing to the solution of the underlying problem.

In this method, semaphores are not introduced as additional arguments for the
predicates, but are stored in a global list data structure, called the semaphore
list. This scheme can be easily implemented in a shared memory parallel
processor.

A separate chunk of memory is earmarked for the semaphore list. A
program which has side-effect predicates is started with the semaphore list
having two semaphores (in that order), Sem1 which has the value 1 and Sem2,
which has the value 2. A side-effect predicate which is called in the body of
a clause, has access to a pointer Local Head, which points to a semaphore in
the semaphore list. The following “macros” are used in this method.

• side effect(Pred,P) calls the side-effect procedure Pred after setting
its Local Head to the pointer P.This points to the ‘leftmost’ semaphore
for Pred.

• pure(Pred,P) – P points to a semaphore, say Sem. This procedure is de-
fined as follows: pure(Pred,P) :- wait odd(Sem), Pred, dec2(Sem).

• add semaphores(N) – creates N semaphores and inserts them in the
semaphore list. If Sem1 is the semaphore pointed to by Local Head
and the next semaphore in the semaphore list is Sem2, this procedure
inserts N semaphores between Sem1 and Sem2.

As an example of how this method is used, consider the following clause:

s1 :- a & s2 & b & s3 & c.

s1, s2 and s3 are side-effect procedures and a, b and c are ‘pure’ procedures.
This clause is annotated as follows:

s1 :- add_semaphores(1),
( pure(a,1) &

side_effect(s2,1) &
pure(b,2) &
side_effect(s3,2) &
pure(c,3)

).
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Figure 7: How Synchronization Blocks help achieve synchronization

Figure 8: Construction of the semaphores in Method 2

This method is attractive, although the use of additional global (heap) storage
should be traded off with the reduction in procedure calling time.

5.2 Method 2: An Alternative Encoding for Synch-Blocks

Consider the side-effect builtin in Figure 7. This has one synch block(SB1)
to its ‘left’ and another synch block(SB2) to its ‘right’. Now, take the ‘ecnt’
record from SB1 and the ‘signal’ record from SB2 and put them together and
encode them in one semaphore, say Sem2. This is done for all the side-effect
builtins. The ‘leftmost’ semaphore, of course, will have only the ‘signal’ part
of a synch block and the ‘rightmost’ semaphore will have only the ‘ecnt’ part
of a synch block. Figure 8 shows the constructions of the semaphores for the
program segments in Figure 7.

How is the information in SB1 ecnt and SB2 signal encoded into just one
record in Sem2? This is done as follows: Before the execution of the program,
Sem2 is created (with value = 0) and then incremented by the number of
subgoals in pure1. After each ‘pure’ subgoal in pure1 has finished executing,
it decrements Sem2 by 1. Meanwhile, ‘side-effect builtin’ waits on (Sem2 =
0) for its execution. This will start executing once all the subgoals in pure1
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are done. Sem2 is decremented by 1 (thus making its value = -1), after
the execution of the ‘side-effect builtin’ is completed. The subgoals in pure2
which were waiting on (Sem2 = -1) now start executing in parallel. This
method offers the advantage of conceptual (and implementation) simplicity,
but requires more semaphores than that described in section 2.3. Also, in that
method, it is possible to execute the subgoals in a pure segment immediately
following a soft side effect builtin in parallel, even before that builtin has been
executed. This cannot be done in method 2.

6 Conclusions

We have presented an efficient and complete method for implementing In-
dependent/Restricted And-Parallelism in the presence of side effects. This
method does not suffer from the drawbacks of previously proposed solu-
tions, i.e (1) it supports backtracking, (2) it uses a simple data structure for
semaphores and a compact set of primitives on the semaphores, (3) it allows
more parallelism, (4) it deals with the case of having a mixture of parallel and
sequential goals, and (5) since it implements semaphores as logical variables,
it can be easily added to a parallel abstract machine-based system through
only minor modifications. We have also presented two additional methods for
implementing And-Parallelism in the presence of side effects. These methods,
an additional and rather interesting method (based on keeping track of the
execution graph), as well as the algorithms for detecting side-effect procedures
and annotating them with semaphores are described in detail in [13].
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