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Abstract. Distributed parallel execution systems speed up applications
by splitting tasks into processes whose execution is assigned to different
receiving nodes in a high-bandwidth network. On the distributing side,
a fundamental problem is grouping and scheduling such tasks such that
each one involves sufficient computational cost when compared to the
task creation and communication costs and other such practical over-
heads. On the receiving side, an important issue is to have some assur-
ance of the correctness and characteristics of the code received and also
of the kind of load the particular task is going to pose, which can be
specified by means of certificates. In this paper we present in a tutorial
way a number of general solutions to these problems, and illustrate them
through their implementation in the Ciao multi-paradigm language and
program development environment. This system includes facilities for
parallel and distributed execution, an assertion language for specifying
complex programs properties (including safety and resource-related prop-
erties), and compile-time and run-time tools for performing automated
parallelization and resource control, as well as certification of programs
with resource consumption assurances and efficient checking of such cer-
tificates.

Keywords: resource awareness, granularity control, mobile code certification,
distributed execution, GRIDs.

1 Introduction

Distributed parallel execution systems speed up applications by splitting tasks
into processes whose execution is assigned to different nodes in a high-bandwidth
network. GRID systems [12] in particular attempt to use for this purpose widely



distributed sets of machines, often crossing several administrative domain bound-
aries. Many interesting challenges arise in this context.

A number of now classical problems have to be solved when this process is
viewed from the producer side, i.e., from the point of view of the machine in
charge of starting and monitoring a particular execution of a given application
(or a part of such an application) by splitting the tasks into processes whose
execution is assigned to different nodes (i.e., consumers) on receiving sides of
the network. A fundamental problem involved in this process is detecting which
tasks composing the application are independent and can thus be executed in
parallel. Much work has been done in the areas of parallelizing compilers and
parallel languages in order to address this problem. While obviously interesting,
herein we will concentrate instead on other issues.

In this sense, a second fundamental problem, and which has also received
considerable attention (even if less than the previous one), is the problem of
grouping and scheduling such tasks, i.e., assigning tasks to remote processors,
and very specially the particular issue of ensuring that the tasks involve sufficient
computational cost when compared to the task creation and communication costs
and other such practical overheads. Due to these overheads, and if the granularity
of parallel tasks (i.e., the work necessary for their complete execution) is too
small, it may happen that the costs are larger than the benefits of their parallel
execution. Of course, the concept of small granularity is relative: it depends on
the concrete system or set of systems where parallel programs are running. Thus,
a resource-aware method has to be devised whereby the granularity of parallel
tasks and their number can be controlled. We will call this the task scheduling
and granularity control problem. In order to ensure that effective speedup can
be obtained from remote execution it is obviously desirable to devise a solution
where load and task distribution decisions are made automatically, specially
in the context of non-embarrassingly parallel and/or irregular computations in
which hand-coded approaches are difficult and tedious to apply.

Interestingly, when viewed from the consumer side, and in an open setting
such as that of the GRID and other similar overlay computing systems, ad-
ditional and novel challenges arise. In more traditional distributed parallelism
situations (e.g., on clusters) receivers are assumed to be either dedicated and/or
to trust and simply accept (or take, in the case of work-stealing schedulers) avail-
able tasks. In a more general setting, the administrative domain of the receiver
can be completely different from that of the producer. Moreover, the receiver is
possibly being used for other purposes (e.g., as a general-purpose workstation)
in addition to being a party to the distributed computation. In this environment,
interesting security- and resource-related issues arise. In particular, in order to
accept some code and a particular task to be performed, the receiver must have
some assurance of the correctness and characteristics of the code received and
also of the kind of load the particular task is going to pose. A receiver should be
free to reject code that does not adhere to a particular safety policy involving
more traditional safety issues (e.g., that it will not write on specific areas of
the disk) or resource-related issues (e.g., that it will not compute for more than
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a given amount of time, or that it will not take up an amount of memory or
other resources above a certain threshold). Although it is obviously possible to
interrupt a task after a certain time or if it starts taking too much memory, this
will be wasteful of resources and require recovery measures. It is clearly more
desirable to be able to detect these situations a priori.

Recent approaches to mobile code safety involve associating safety informa-
tion in the form of a certificate to programs [28, 21, 26, 1]. The certificate (or
proof) is created at compile time, and packaged along with the untrusted code.
The consumer who receives or downloads the code+certificate package can then
run a verifier which by a straightforward inspection of the code and the cer-
tificate, can verify the validity of the certificate and thus compliance with the
safety policy. It appears interesting to devise means for certifying security by
enhancing mobile code with certificates which guarantee that the execution of
the (in principle untrusted) code received from another node in the network is
safe but also, as mentioned above, efficient, according to a predefined safety
policy which includes properties related to resource consumption.

In this paper we present in a tutorial way a number of general solutions to
these problems, and illustrate them through their implementation in the con-
text of a multi-paradigm language and program development environment that
we have developed, Ciao [3]. This system includes facilities for parallel and dis-
tributed execution, an assertion language for specifying complex programs prop-
erties (including safety and resource-related properties), and compile-time and
run-time tools for performing automated parallelization and resource control, as
well as certification of programs and efficient checking of such certificates.

Our system allows coding complex programs combining the styles of logic,
constraint, functional, and a particular version of object-oriented programming.
Programs which include logic and constraint programming (CLP) constructs
have been shown to offer a particularly interesting case for studying the issues
that we are interested in [14]. These programming paradigms pose significant
challenges to parallelization and task distribution, which relate closely to the
more difficult problems faced in traditional parallelization. This includes the
presence of highly irregular computations and dynamic control flow, non-trivial
notions of independence, the presence of dynamically allocated, complex data
structures containing pointers, etc. In addition, the advanced state of program
analysis technology and the expressiveness of existing abstract analysis domains
used in the analysis of these paradigms has become very useful for defining,
manipulating, and inferring a wide range of properties including independence,
bounds on data structure sizes, computational cost, etc.

After first reviewing our approach to solving the granularity control problem
using program analysis and transformation techniques, we propose a technique
for resource-aware security in mobile code based on safety certificates which
express properties related to resource usage. Intuitively, we use the granularity
information (computed by the cost analysis carried out to decide the distribution
of tasks on the producer side) in order to generate so-called cost certificates which
are packaged along with the untrusted code. The idea is that the receiving side
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can reject code which brings cost certificates (which it cannot validate or) which
have too large cost requirements in terms of computing resources (in time and/or
space) and accept mobile code which meets the established requirements.

The rest of the paper proceeds as follows. After briefly presenting in Section 2
the basic techniques used for inferring complex properties in our approach, in-
cluding upper and lower bounds on resource usage, Section 3 reviews our ap-
proach to the use of bounds on data structure sizes and computational cost to
perform automatic granularity control. Section 4 then discusses our approach to
resource-aware mobile code certification. Section 5 finally presents our conclu-
sions.

2 Inferring Complex Properties Including Term Sizes

and Costs

In order to illustrate our approach in a concrete setting, we will use CiaoPP [15]
throughout the paper. CiaoPP is a component of the Ciao programming envi-
ronment which performs several tasks including automated parallelization and
resource control, as well as certification of programs, and efficient checking of
such certificates. CiaoPP uses throughout the now well-established technique of
abstract interpretation [5]. This technique has allowed the development of very
sophisticated global static program analyses which are at the same time auto-
matic, provably correct, and practical. The basic idea of abstract interpretation
is to infer information on programs by interpreting (“running”) them using ab-
stract values rather than concrete ones, thus obtaining safe approximations of
program behavior. The technique allows inferring much richer information than,
for example, traditional types. The fact that at the heart of Ciao lies an efficient
logic programming-based kernel language allows the use in CiaoPP of the very
large body of approximation domains, inference techniques and tools for abstract
interpretation-based semantic analysis which have been developed to a powerful
and mature level in this area (see, e.g., [2, 27, 6, 16] and their references) and
which are integrated in CiaoPP. As a result of this, CiaoPP can infer at compile-
time, always safely, and with a significance degree of precision, a wide range of
properties such as data structure shape (including pointer sharing), bounds on
data structure sizes, determinacy, termination, non-failure, bounds on resource
consumption (time or space cost), etc.

All this information is expressed by the compiler using assertions : syntactic
objects which allow expressing “abstract”—i.e. symbolic—properties over differ-
ent abstract domains. In particular, we use the high-level assertion language of
[29], which actually implements a two-way communication with the system: it
allows providing information to the analyzer as well as representing its results.

As a very simple example, consider the following procedure inc all/2, which
increments all elements of a list by adding one to each of them (we use functional
notation for conciseness):

inc_all([]) := [].

inc_all([H|T]) := [ H+1 | inc_all(T)].
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Assume that analysis of the rest of the program has determined that this proce-
dure will be called providing a list of numbers as input. The output from CiaoPP

for this program then includes the following assertion:

:- true pred inc_all(A,B)

: ( list(A,num), var(B) )

=> ( list(A,num), list(B,num), size_lb(B,length(A))

+ ( not_fails, is_det, steps_lb(2*length(A)+1)).

Such “true pred” assertions specify in a combined way properties of both: “:”
the entry (i.e., upon calling) and “=>” the exit (i.e., upon success) points of all
calls to the procedure, as well as some global properties of its execution. The
assertion expresses that procedure inc all will produce as output a list of num-
bers B, whose length is at least (size lb) equal to the length of the input list,
that the procedure will never fail (i.e., an output value will be computed for
any possible input), that it is deterministic (only one solution will be produced
as output for any input), and that a lower bound on its computational cost
(steps lb) is 2 length(A) + 1 execution steps (where the cost measure used in
the example is the number of procedure calls, but it can be any other arbitrary
measure). This simple example illustrates type inference, non-failure and deter-
minism analyses, as well as lower-bound argument size and computational cost
inference. The same cost and size results are actually obtained from the upper
bounds analyses (indicating that in this case the results are exact, rather than
approximations). Note that obtaining a non-infinite upper bound on cost also
implies proving termination of the procedure.

As can be seen from the example, in our approach cost bounds (upper or
lower) are expressed as functions on the sizes of the input arguments and yield
bounds on the number of execution steps required by the computation. Various
measures are used for the “size” of an input, such as list-length, term-size, term-
depth, integer-value, etc. Types, modes, and size measures are first automatically
inferred by the analyzers and then used in the size and cost analysis.

While it is beyond the scope of this paper to fully explain all the (generally
abstract interpretation-based) techniques involved in this process (see, e.g., [15,
10, 11] and their references), we illustrate through a simple example the funda-
mental intuition behind our lower bound cost estimation technique.

Consider again the simple inc all procedure above and the assumption that
type and mode inference has determined that it will be called providing a list of
numbers as input. Assume again that the cost unit is the number of procedure
calls. In a first approximation, and for simplicity, we also assume that the cost
of performing an addition is the same as that of a procedure call. With these
assumptions the exact cost function of procedure inc all is Costinc all(n) =
2 n + 1, where n is the size (length) of the input list.

In order to obtain a lower bound approximation of the previous cost func-
tion, CiaoPP’s analyses first determine, based on the mode and type information
inferred, that the argument size metric to be used is list length. An interesting
problem with estimating lower bounds is that in general it is necessary to ac-
count for the possibility of failure of a call to the procedure (because of, e.g., an
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inadmissible argument) leading to a trivial lower bound of 0. For this reason, the
lower bound cost analyzer uses information inferred by non-failure analysis [9],
which can detect procedures and goals that can be guaranteed not to fail, i.e.,
to produce at least one solution (which would indeed be the case for inc all)
or not terminate.

In general, in order to determine the work done by (recursive) clauses, it is
necessary to be able to estimate the size of input arguments in the procedure
calls in the body of the procedure, relative to the sizes of the input arguments.
For this, we use an abstraction of procedure definitions called a data dependency
graph. Our approach to cost analysis consists of the following steps:

1. Use data dependency graphs to determine the relative sizes of variable bind-
ings at different program points.

2. Use the size information to set up difference equations representing the com-
putational cost of procedures

3. Compute lower/upper bounds to the solutions of these difference equations
to obtain estimates of task granularities.

The size of an output argument in a procedure call depends, in general,
on the size of the input arguments in that call. For this reason, for each output
argument we use an expression which yields its size as a function of the input data
sizes. For the inc all procedure let Size2inc all(n) denote the size of the output
argument (the second) as a function of the size of its first (input) argument n.
Once we have determined that the size measure to use is list length, and the size
relationship which says that the size of the input list to the recursive call is the
size of the input list of the procedure head minus one, the following difference
equation can be set up for inc all/2:

Size2inc all(0) = 0 (boundary condition from base case),

Size2inc all(n) = 1 + Size2inc all(n − 1).

The solution of this difference equation obtained is Size2inc all(n) = n.
Let CostLp(n) denote a lower bound on the cost (number of resolution steps)

of a call to procedure p with an input of size n. Given all the assumptions above,
and the size relations obtained, the following difference equation can be set up
for the cost of inc all/2:

CostLinc all(0) = 1 (boundary condition from base case),

CostLinc all(n) = 1 + CostLinc all(n − 1).

The solution obtained for this difference equation is CostLinc all(n) = 2 n+1.
In this case, the lower bound inferred is the exact cost (the upper bound cost
analysis also infers the same function). In our approach, sometimes the solutions
of the difference equations need to be in fact approximated by a lower bound (a
safe approximation) when the exact solution cannot be found. The upper bound
cost estimation case is very similar to the lower bound one, although simpler,
since we do not have to account for the possibility of failure.
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3 Controlling Granularity in Distributed Computing

As mentioned in Section 1, and in view of the techniques introduced in Section 2,
we now discuss the task scheduling and granularity control problem, assuming
that the program is already parallelized.4 The aim of such distributed granular-
ity control is to replace parallel execution with sequential execution or vice-versa
based on some conditions related to task size and overheads. The benefits from
controlling parallel task size will obviously be greater for systems with greater
parallel execution overheads. In fact, in many architectures (e.g. distributed
memory multiprocessors, workstation “farms”, GRID systems, etc.) such over-
heads can be very significant and in them automatic parallelization cannot in
general be done realistically without granularity control. In some other architec-
tures where the overheads for spawning goals in parallel are small (e.g. in small
shared memory multiprocessors) granularity control is not essential but it can
also achieve important improvements in speedup.

Granularity control has been studied in the context of traditional program-
ming [20, 25], functional programming [17, 18], and also logic programming [19,
7, 30, 8, 23, 24]. In [24] we proposed a general granularity control model and re-
ported on its application to the case of logic programs. This model proposes
(efficient) conditions based on the use of information available on task granular-
ity in order to choose between parallel and sequential execution. The problems
to be solved in order to perform granularity control following this approach in-
clude, on one hand, estimating the cost of tasks, of the overheads associated with
their parallel execution, and of the granularity control technique itself. On the
other hand there is also the problem of devising, given that information, efficient
compile-time and run-time granularity control techniques.

Performing accurate granularity control at compile-time is difficult because
some of the information needed to evaluate communication and computational
costs, as for example input data size, is only known at run-time. A useful strategy
is to do as much work as possible at compile-time, and postpone some final
decisions to run-time. This can be achieved by generating at compile-time cost
functions which estimate task costs as a function of input data size, which are
then evaluated at run-time when such size is known. Then, after comparing costs
of sequential and parallel executions (including all overheads), it is possible to
determine which type of execution is profitable.

The approximation of these cost functions can be based either on some heuris-
tics (e.g., profiling) or on a safe approximation (i.e. an upper or lower bound).
We were able to show that if upper or lower bounds on task costs are available,
under a given set of assumptions, it is possible to ensure that some parallel, dis-
tributed executions will always produce speedup (and also that some others are
best executed sequentially). Because of these results, we will in general require

4 In the past two decades, quite significant progress has been made in the area of
automatically parallelizing programs in the context of logic and constraint programs,
and some of the challenges have been tackled quite effectively there –see, for example,
[13, 14, 4] for an overview of this area.
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the cost information to be not just an approximation, but rather a well-defined
bound on the actual execution cost. In particular, we will use the techniques for
inferring upper- and lower-bound cost functions outlined in the previous section.

Assuming that such functions or similar techniques for determining task costs
and overheads are given, the remainder of the granularity control task is to
devise a way to actually compute such costs and then dynamically control task
creation and scheduling using such information. Again the approach of doing
as much of the work as possible at compile-time seems advantageous. In our
approach, a transformation of the program is performed at compile time such
that the cost computations and spawning decisions are encoded in the program
itself, and in the most efficient way possible. The idea is to perform any remaining
computations and decisions at run-time when the parameters missing at compile-
time, such as data sizes or node load are available. In particular, the transformed
programs will perform (generally) the following tasks: computing the sizes of data
that appear in cost functions; evaluating the cost functions of the tasks to be
executed in parallel using those data sizes; safely approximating the spawning
and scheduling overheads (often also a function of data sizes); comparing these
quantities to decide whether to schedule tasks in parallel or sequentially; deciding
whether granularity control should be continued or not; etc.

As an example, consider the inc all procedure of Section 2 and the program
expression:

..., Y = inc_all(X) & M = r(Z), ...

which indicates that the procedure call inc all(X) is to be made available for ex-
ecution in parallel with the call to r(Z) (we assume that analysis has determined
that inc all(X) and r(Z) are independent, by, e.g., ensuring that there are no
pointers between the data structures pointed to by X,Y and Z,M. From Section 2
we know that the cost function inferred for inc all is CostL

inc all(n) = 2 n + 1.
Assume also that the cost of scheduling a task is constant and equal to 100 com-
putation steps. The previous goal would then be transformed into the following
one:

..., ( 2*length(X)+1 > 100 -> Y = inc_all(X) & M = r(Z)

; Y = inc_all(X), M = r(Z) ), ...

where ( if -> then ; else ) is syntax for an if-then-else and “,” denotes
sequential execution as usual. Thus, when 2 ∗ length(X) + 1 (i.e., the lower
bound on the cost of inc all(X)) is greater than the threshold, the task is
made available for parallel execution and not otherwise. Many optimizations are
possible. In this particular case, the program expression can be simplified to:

..., ( length(X) > 50 -> Y = inc_all(X) & M = r(Z)

; Y = inc_all(X), M = r(Z) ), ...

and, assuming that length gt(L,N) succeeds if the length of L is greater than
N (its implementation obviously only requires to traverse at most the n first
elements of list), it can be expressed as:

..., ( length_gt(LX,50) -> Y = inc_all(X) & M = r(Z)

; Y = inc_all(X), M = r(Z) ), ...
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:- module(qsort, [qsort/2], [assertions]).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).

partition([E|R],C,[E|Left1],Right):-

E < C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

E >= C, partition(R,C,Left,Right1).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

Fig. 1. A qsort program.

As mentioned before, scheduling costs are often also a function of data sizes
(e.g., communication costs). For example, assume that the cost of executing
remotely Y = inc all(X) is 0.1 (length(X) + length(Y )), where length(Y ) is
the size of the result, an upper bound on which (actually, exact size) we know
to be length(X). Thus, our comparison would now be:

2 length(X) + 1 > 0.1 (length(X) + length(Y )) ≡

2 length(X) + 1 > 0.1 (length(X) + length(X)) ≡

2 length(X) + 1 > 0.2 length(X) ∼=

2 length(X) > 0.2 length(X) ≡

2 > 0.2

Which essentially means that the task can be scheduled for parallel execu-
tion for any input size. Conversely, with a communication cost greater than
0.5(length(X) + length(Y )) the conclusion would be that it would never be
profitable to run in parallel.

These ideas have been implemented and integrated in the CiaoPP system,
which uses the information produced by its analyzers to perform combined
compile–time/run–time resource control. The more realistic example in Figure 1
(a quick-sort program coded using logic programming) illustrates additional op-
timizations performed by CiaoPP in addition to cost function simplification,
which include improved term size computation and stopping performing granu-
larity control below certain thresholds. The concrete transformation produced by
CiaoPP adds a clause: “qsort(X1,X2) :- g_qsort(X1,X2).” (to preserve the
original entry point) and produces g qsort/2, the version of qsort/2 that per-
forms granularity control (where s qsort/2 is the sequential version) is shown
in Figure 2.

Note that if the lengths of the two input lists to the recursive calls to qsort
are greater than a threshold (a list length of 7 in this case) then versions which
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g_qsort([X|L],R) :-

partition_o3_4(L,X,L1,L2,S1,S2),

( S2>7 -> (S1>7 -> g_qsort(L2,R2) & g_qsort(L1,R1)

; g_qsort(L2,R2), s_qsort(L1,R1))

; (S1>7 -> s_qsort(L2,R2), g_qsort(L1,R1)

; s_qsort(L2,R2), s_qsort(L1,R1))),

append(R1,[X|R2],R).

g_qsort([],[]).

Fig. 2. The qsort program transformed for granularity control

continue performing granularity control are executed in parallel. Otherwise, the
two recursive calls are executed sequentially. The executed version of each such
call depends on its grain size: if the length of its input list is not greater than the
threshold then a sequential version which does not perform granularity control is
executed. This is based on the detection of a recursive invariant: in subsequent
recursions this goal will not produce tasks with input sizes greater than the
threshold, and thus, for all of them, execution should be performed sequentially
and, obviously, no granularity control is needed. Procedure partition o3 4/6:

partition_o3_4([],_B,[],[],0,0).

partition_o3_4([E|R],C,[E|Left1],Right,S1,S2) :-

E<C, partition_o3_4(R,C,Left1,Right,S3,S2), S1 is S3+1.

partition_o3_4([E|R],C,Left,[E|Right1],S1,S2) :-

E>=C, partition_o3_4(R,C,Left,Right1,S1,S3), S2 is S3+1.

is the transformed version of partition/4, which “on the fly” computes the
sizes of its third and fourth arguments (the automatically generated variables
S1 and S2 represent these sizes respectively) [22].

4 Resource-Aware Mobile Computing

Having reviewed the issue of granularity control, and following the classification
of issues of Section 1 we now turn our attention to some resource-related issues on
the receiver side. In an open setting, such as that of the GRID and other similar
overlay computing systems, receivers must have some assurance that the received
code is safe to run, i.e., that it adheres to some conditions (the safety policy)
regarding what it will do. We follow current approaches to mobile code safety,
based on the technique of Proof-Carrying Code (PCC) [28], which as mentioned
in Section 1 associate safety certificates to programs. A certificate (or proof)
is created by the code supplier for each task at compile time, and packaged
along with the untrusted mobile code sent to (or taken by) other nodes in the
network. The consumer node who receives or takes the code+certificate package
(plus a given task to do within that code) can then run a checker which by a
straightforward inspection of the code and the certificate can verify the validity
of the certificate and thus compliance with the safety policy. The key benefit
of this approach is that the consumer is given by the supplier the capacity of
ensuring compliance with the desired safety policy in a simple and efficient way.
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Indeed the (proof) checker used at the receiving side performs a task that should
be much simpler, efficient, and automatic than generating the original certificate.
For instance, in the first PCC system [28], the certificate is originally a proof
in first-order logic of certain verification conditions and the checking process
involves ensuring that the certificate is indeed a valid first-order proof.

The main practical difficulty of PCC techniques is in generating safety cer-
tificates which at the same time:

– allow expressing interesting safety properties,
– can be generated automatically and,
– are easy and efficient to check.

Our approach to mobile code safety [1] directly addresses these problems. It
uses approximation techniques, generally based on abstract interpretation, and
it has been implemented using the facilities available in CiaoPP and discussed in
the previous sections. These techniques offer a number of advantages for dealing
with the aforementioned issues. The expressiveness of the properties that can
be handled by the available abstract domains (and which can be used in a wide
variety of assertions) will be implicitly available to define a wide range of safety
conditions covering issues like independence, types, freeness from side effects, ac-
cess patterns, bounds on data structure sizes, bounds on cost, etc. Furthermore,
the approach inherits the inference power of the abstract interpretation engines
used in CLP to automatically generate and validate the certificates. In the fol-
lowing, we review our standard mobile code certification process and discuss the
application in parallel distributed execution.

Certification in the Supplier: The certification process starts from an initial
program and a set of assertions provided by the user on the producer side,
which encode the safety policy that the program should meet, and which are to
be verified. Consider for example the following (naive) reverse program (where
append is assumed to be defined as in Figure 1):

:- entry reverse/2 : list * var.

reverse( [] ) := [].

reverse( [H|L] ) := ~append( reverse(L), [H] ).

Let us assume also that we know that the consumer will only accept purely com-
putational tasks, i.e., tasks that have no side effects, and only those of polynomial
(actually, at most quadratic) complexity. This safety policy can be expressed at
the producer for this particular program using the following assertions:

:- check comp reverse(A,B)

+ sideff(free).

:- check comp reverse(A,B)

: list * var

+ steps_ub( o(exp(length(A),2)) ).

The first (computational –comp) assertion states that it should be verified that
the computation is pure in the sense that it does not produce any side effects
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(such as opening a file, etc.). The second (also computational) assertion states
that it should be verified that there is an upper bound for the cost of this
predicate in O(n2), i.e., quadratic in n, where n is the length of the first list
(represented as length(A)). Implicitly, we are assuming that the code will be
accepted at the receiving end, provided all assertions can be checked, i.e., the
intended semantics expressed in the above assertions determines the safety con-
dition. This can be a policy agreed a priori or exchanged dynamically.

Note that, unlike traditional safety properties such as, e.g., type correct-
ness, which can be regarded as platform independent, resource-related properties
should take into account issues such as load and available computing resources
in each particular system. Thus, for resource-related properties different nodes
may impose different policies for the acceptance of tasks (mobile code).

Generation of the Certificate: In our approach, given the previous assertions
defining the safety policy, the certificate is automatically generated by an analy-
sis engine (which in the particular case of CiaoPP is based on the goal dependent,
i.e., context-sensitive, analyzer of [16]). This analysis algorithm receives as input
a set of entries (included in the program like the entry assertion of the example
above) which define the base, boundary assumptions on the input data. These
base assumptions can be checked at run-time on the actual input data (in our
example the type of the input is stated to be a list). The computation of the
analysis process terminates when a fixpoint of a set of equations is reached. Thus,
the results of analysis are often called the analysis fixpoint.

Due to space limitations, and given that it is now well understood, we do
not describe here the analysis algorithm (details can be found in, e.g., [2, 16]).
The important point to note is that the certification process is based on the
idea that the role of certificate can be played by a particular and small sub-
set of the analysis results (i.e., of the analysis fixpoint) computed by abstract
interpretation-based analyses.

For instance, the analyzers available in CiaoPP infer, among others, the fol-
lowing information for the above program and entry:

:- true pred reverse(A,B)

: ( list(A), var(B) )

=> ( list(A), list(B))

+ ( not_fails, is_det, sideff(free),

steps_ub( 0.5*exp(length(A),2)+1.5*length(A)+1 )).

stating that the output is also a list, that the procedure is deterministic and will
not fail, that it does not contain side-effects, and that calls to this procedure
take at most 0.5 (length(A))2 + 1.5 length(A) + 1 resolution steps. In addition,
given this information, the output shows that the “status” of the three check

assertions has become checked, which means that they have been validated and
thus the program is safe to run (according to the intended meaning):

:- checked comp reverse(A,B)

+ sideff(free).
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:- checked comp reverse(A,B)

: list * var

+ steps_ub( o(exp(length(A),2)) ).

Thus, we have verified that the safety condition is met and that the code is
indeed safe to run (for now on the producer side). The analysis results above
can themselves be used as the cost and safety certificate to attest a safe and
efficient use of procedure reverse on the receiving side.

In general the verification process requires first generating a verification con-
dition [1] that encodes the information in the check assertions to be verified
and then checking this condition against the information available from analy-
sis. This validation may yield three different possible status: i) the verification
condition is indeed checked and the fixpoint is considered a valid certificate, ii)
it is disproved, and thus the certificate is not valid and the code is definitely
not safe to run (we should obviously correct the program before continuing the
process); and iii) it cannot be proved nor disproved. Case iii) occurs because
the most interesting properties are in general undecidable. The analysis pro-
cess in order to always terminate is based on approximations, and may not be
able to infer precise enough information to verify the conditions. The user can
then provide a more refined description of initial entries or choose a different,
finer-grained, abstract domain. However, despite the inevitable theoretical lim-
itations, the analysis algorithms and abstract domains have been proved very
effective in practice. In both the ii) and iii) cases, the certification process needs
to be restarted until achieving a verification condition which meets i). If it suc-
ceeds, the fixpoint constitutes a valid certificate and can be sent to the receiving
side together with the program.

Validation in the Consumer: The validation process performed by the con-
sumer node is similar to the above certification process except that the analysis
engine is replaced by an analysis checker. The definition of the analysis checker
is centered around the observation that the checking algorithm can be defined as
a very simplified “one-pass” analyzer. Intuitively since the certification process
already provides the fixpoint result as certificate, an additional analysis pass
over it cannot change the result. Thus, as long as the fixpoint is valid, one single
execution of the abstract interpreter validates the certificate.

As it became apparent in the above example, the interesting point to note is
that abstract interpretation-based techniques are able to reason about computa-
tional properties which can be useful for controlling efficiency issues in a mobile
computing environment and in distributed parallelism platforms. We consider
the case of the receiver of a task in a parallel distributed system such as a GRID.
This receiver (the code consumer) could use this method to reject code which
does not adhere to some specification, including usage of computing resources
(in time and/or space). Reconsider for example the previous reverse program
and assume that a node with very limited computing resources is assigned to
perform a computation using this code. Then, the following “check” assertion
can be used for such particular node:
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:- check comp reverse(A,B)

: ( list(A, term), var(B) )

+ steps_ub( length(A) + 1 ).

which expresses that the consumer node will not accept an implementation of
reverse with complexity bigger than linear. In order to guarantee that the cost
assertion holds, the certificate should contain upper bounds on computational
cost. Then, the code receiver proceeds to validate the certificate. The task of
checking that a given expression is an upper bound is definitely simpler than
that of obtaining the most accurate possible upper bound. If the certificate is
not valid, the code is discarded. If it is valid, the code will be accepted only
if the upper bound in the certificate is lower or equal than that stated in the
assertion. In our example, the certificate contains the (valid) information that
reverse will take at most 0.5 (length(A))2 +1.5 length(A)+1 resolution steps.
However, the assertion requires the cost to be at most length(A) + 1 resolution
steps. A comparison between these cost functions does not allow proving that
the code received by the consumer satisfies the efficiency requirements imposed
(i.e. the assertion cannot be proved).5 This means that the consumer will reject
the code. Similar results would be obtained if the worst case complexity property
steps ub( o(length(A)) ) was used in the above check assertion, instead of
steps ub( length(A) + 1 ).

Finally, and interestingly, note that the certificate can also be used to ap-
proximate the actual costs of execution and make decisions accordingly. Since
the code receiver knows the data sizes, it can easily apply them to the cost func-
tions (once they are verified) and obtain values that safely predict the time and
space that the task received will consume.

5 Conclusions

We have presented an abstract interpretation-based approach to resource-aware
distributed and mobile computing and discussed their implementation in the
context of a multi-paradigm programming system. Our framework uses modu-
lar, incremental, abstract interpretation as a fundamental tool to infer resource
and safety information about programs. We have shown this information, in-
cluding lower bounds on cost and upper bounds on data sizes, can be used to
perform high-level optimizations such as resource-aware task granularity control.
Moreover, cost information and, in particular, upper bounds, inferred during the
previous process are relevant to certifying and validating mobile programs which
may have constraints in terms of computing resources (in time and/or space). In
essence, we believe that our proposals can contribute to bringing increased flex-
ibility, expressiveness and automation of important resource-awareness aspects
in the area of mobile and distributed computing.

5 Indeed, the lower bound cost analysis in fact disproves the assertion, which is clearly
invalid.
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